Wednesday/Thursday, October 2 & 3, 2019 – Atoms, Ions, and Molecules Practice

I. Warm-Up -

1. On the blank periodic table, indicate where the metals, nonmetals, and metalloids are found. Also show which columns are the noble gases, alkali metals, alkaline earth metals, halogens, and transition metals.

2. Phenomena (Truncated)

What patterns do you notice in the data samples below?

1																	2
H																	He
Hydrogen 1.00794																	Helium 4.003
3	4	1										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
Lithium	Berylliam											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon 20.1707
11	12	1										13	14	14.00674	15.9994	17	18
No	Ma											A1	6:	D	e lo	G	10 A.r.
Sedium	Magnesium											Aluminum	Silicon	f Phosphorus	Sulfar	Chlorine	Argon
22.989770	24.3050						26	0.7	20		20	26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Rabidium 85,4678	Strontium 87.62	Yttrium 88,90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95,94	Technetium (98)	Rathenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114,818	Tin 118,710	Antimony 121,760	Tellurium 127.60	lodine 126,90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132 00545	Barium	Lanthanum	Hafnium 178.40	Tantalum	Tungsten 193.94	Rhenium 186 207	Osmium 100 23	Iridium 102.217	Platinum 195.078	Gold 106.06655	Mercury 200 59	Thallium 204 1833	Lead 207.2	Bismuth	Polonium (200)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	208.78038	(407)	(610)	(000)
Fr	Ra	Ac	Rf	Db	So	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				58	50	60	61	62	63	64	65	66	67	68	60	70	71
				Co	Du	Nd	Dm	Sm 02	E.	Cd	ть	D _w	Ho.	E.	Tm	Vh	In In
				Cerium	F F Praseodymium	1 VQ Neodymium	F III Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	T D Ytterbium	Lutetium
				140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Substance X	Mass of A	Mass of B		Mass of A	Mass of B
Sample 1	0.86 g	1.96 g	Substance Y	0.86 g	0.98 g
Sample 2	4.26 g	9.73 g	Substance Z	0.43 g	0.25 g
Sample 3	32.8 g	74.9 g			

Law of Conservation of Mass Law of Definite Proportions Law of Multiple Proportions

3. *How was the homework?* Chapter 2: 28,42,90,91

How do we know there are atoms?

4. Compound X_2Y is 60% X by mass. Calculate the percent Y by mass of the compound X_2Y_2 .

II.]	Ions		Atoms will gain or lose electrons unti	l they have the same
1.	Predict the charge if the	he following	number of electrons as	
	elements were in their	ionic form.	A positively charged ion is called a	They are
a. Li	b. Ca	c. Ga	formed by elements on the	of the periodic table.
d. N	e. S	f. B	A negatively charged ion is called an	They are
g. Ag	h. Cd	i. V	formed by elements on the	of the periodic table.

III. Naming Compounds

2.	Name the following compounds:	
NiNO ₃	N_2O_5	
AgBr	(NH ₄) ₂ CO ₃	

 H_2SO_3 (aq)

 SF_6

V. Practice

- 3. For each of the following determine the number of protons, neutrons and electrons: a. ${}^{47}\text{Ti}$ b. ${}^{90}\text{Sr}^{2+}$ c. ${}^{32}\text{P}^{3-}$
- 4. Fill in the following table

Symbol	³⁷ Cl ⁻			
# of Protons		11		92
# of		12	46	
neutrons				
# of		10	36	86
electrons				
Mass			81	226
number				

5. An element's most stable ion forms an ionic compound with chlorine having the formula XCl₂. If the mass number of the ion is 24 and it has 10 electrons, what is the element and how many neutrons does it have?

Types of Compounds

Molecular Compound -

Ionic Compound -

- 6. Which of the following represents a pair of isotopes?
 a. ³²S and ³²S²⁻
 b. O₂ and O₃
 - a. $S and S = 0. O_2 and O_3$ c. ${}^{15}_{7}N and {}^{15}_{8}O = 0. O_2 and O_3$ d. ${}^{12}_{6}C and {}^{13}_{6}C$ e. ${}^{18}_{8}O and {}^{19}_{9}F$
- Here are some common names that you're expected to know – write the chemical formula.
 - a. Water
 - b. methane
 - c. ammonia`
- IV. Name the following compounds: a. LiHCO₃
 - b. Na₂SO₃
 - c. (NH4)3PO4
 - d. Fe(OH)₃
 - $e. \ SnS_2$
 - f. HF_(g)
 - g. HClO(aq)

h. $H_2C_2O_{4(aq)}$

i. SBr₆

- j. CO
- k. P₂O₅
- V. What are the names of the following elements: Mo, Mg, and Sn?
- VI. Predict the formula for the following:

- a. calcium cyanide
- b. aluminum sulfate
- c. lead(IV) oxalate
- d. hydrosulfuric acid
- e. sulfuric acid

10 *

Ne

20.180

- f. phosphorous acid
- g. sulfur trioxide
- h. carbon tetrachloride
- VII. Which one of the following statements about atomic structure is false? a. The protons and neutrons in the nucleus are very tightly packed. b. The electrons occupy a very large volume compared to the nucleus. c. The number of protons and the number of neutrons are always the same in the neutral atom. d. Almost all of the mass of the atom is concentrated in the nucleus.

e. All of the above statements are true.

Mass Number (A)

× ³⁵₁₇Cl and ³⁷₁₇Cl

Atomic Number (Z)

These can also be written Cl-35 and Cl-37

Naming Ionic Compounds

- 1. metals with fixed charges (Grps 1, 2, Al, Ga, Ag, Zn and Cd see diagram below) \Rightarrow use the elements name as is
- 2. metals with varying charges (all other metals) \Rightarrow use the elements name and a Roman numeral (denotes the charge)
- 3. $NH_4^+ \Rightarrow$ ammonium

The second name is the anion:

1. monoatomic \Rightarrow elements name with the suffix –ide

Mass Number (A) \Rightarrow sum of protons and neutrons **Note that mass number is NOT on the periodic table**

2. polyatomic \Rightarrow you'll eventually memorize these names

1 [−] charge	2 ⁻ charge		3 ⁻ c	harge			_	
hydroxide ⇒ OH ⁻	sulfite \Rightarrow SO ₃ ²	-	boı	ate \Rightarrow l	BO₃ ^{3 –}			
$cyanide \Rightarrow CN^{-}$	sulfate \Rightarrow SO ₄ ²	2-	pho	osphite	$\Rightarrow PO_3^3$	3 —		
nitrite $\Rightarrow NO_2^-$	carbonate \Rightarrow (CO_3^{2-}	pho	osphate	$\Rightarrow PO_4$	1 ^{3 –}		
nitrate \Rightarrow NO ₃ [−]	oxalate \Rightarrow C ₂ O	4 ²⁻	ars	enate =	⇒ AsO₄ ³	3 —		
hypochlorite \Rightarrow ClO ⁻	hydrogen pho	sphate \Rightarrow HPO ₄ ²⁻						
$chlorite \Rightarrow ClO_2^-$	chromate $\Rightarrow C$	rO4 ²⁻						
chlorate \Rightarrow ClO ₃ [−]	dichromate ⇒	$Cr_2O_7^{2-}$						
perchlorate \Rightarrow ClO ₄ ⁻								
acetate \Rightarrow C ₂ H ₃ O ₂ ⁻	+1						2	0
hydrogen carbonate ⇒ HCO₃ [−]				+3	2	2	_1	2 He
dihydrogen phosphate \Rightarrow H ₂ PO ₄ ⁻	3 4	Trends for		+3	-3	8	9	Halture 10
hydrogen sulfite \Rightarrow HSO ₃ ⁻	Li Be Libiano Brytham				N Niropan	O Osygen	F	Ne
hydrogen sulfate ⇒ HSO₄ [−]	11 12 Na Mg	Ionic Charge	a	13 Al	15 P	16 S	17 Cl	18 Ar
permanganate ⇒ MnO₄ [−]	19 20		3	0 31	Progherus	34	35	36
thiocyanate \Rightarrow SCN ⁻	K Ca Potestern Calcium		+1 2	in Ga _{ne} Gaffuete		Se Selenium	Br	Кгуров
bromate \Rightarrow BrO ₃ ⁻	37 38 Rb Sr Identities		47 4 Ag C	8 d			53 I	54 Xe
bromite \Rightarrow BrO ₂ ⁻	55 56 Cs Ba		L					86 Rn
	87 88 Fr Ra Francust							nadre

Naming Acids

1. Acids without oxygen:

a. Add prefix hydro to the anion's name

b. Change suffix to ic acid ex: HCN \Rightarrow hydrocyanic acid <u>or</u> H₂S \Rightarrow hydrosulfuric acid

2. Acids with oxygen:

Change suffix of anion in the acid

ate ⇒ic acid

ite ⇒ous acid

ex: $HNO_2 \Rightarrow$ *nitrous acid vs.* $HNO_3 \Rightarrow$ *nitric acid*

Naming Molecular Compounds

1. Add a Greek prefix to the first element's name when there's 2 or more

2. Always add a Greek prefix to the 2nd element <u>and</u> change the suffix to –ide ex: $NF_3 \Rightarrow$ nitrogen trifluoride

Greek prefixes

1-mono 2-ui 3-un 4-letra 5-penta 6-nexa 7-nepta 8-octa 9-nona 1	-mono 2-di	2-di 3-tri 4-tetra	5-penta	6-hexa	7-hepta	8-octa	9-nona	10-deca
---	------------	--------------------	---------	--------	---------	--------	--------	---------

Image Credit 1 - Terri Bentzinger's CLAS Worksheets