| Name: | Date: | CHEM 1A | |--|---|----------------------------------| | Monday, October 7, 2019 – Stoichiometry Part 1 (Chapter 3) | | | | I. Warm-Up – Compound X_2Y is 60% X by mass. Calcula | te the percent Y by mass o | f the compound XY ₃ ? | | | | | | | | | | II. What is a mole? A mole is a number; it is | Molar Mass/Atomic I | Mass – | | of something. (Hint: You will need your periodic table for these problems.) | Motar Mass/Monte | rass = | | 1. How many moles in 5.23×10 ²³ atoms? | Average Atomic Mas. | s = | | 1. How many moles in 5.25×10 atoms. | | | | 2. H | Percent by mass = | | | 2. How many moles of copper in 3.20 g? | | | | | | | | 3. How many moles of O in 3.4 mol of CuSO ₄ ? | | | | | | | | 4. Average Atomic Mass Values - Three naturally occurr amu, ⁴⁰ K, 39.963999 amu, and ⁴¹ K. The natural abunda | | | | respectively. Determine the atomic mass of ⁴¹ K. | 5. In a sample of 200 chlorine atoms, it is found that 151 a isotope. What is the other naturally occurring isotope of | ` , , , , , , , , , , , , , , , , , , , | 49 are another | | | | | | | | | | 6. For which of the following compounds does 1.00 g repr | esent $3.32 \times 10^{-2} \text{ mol}$? | | | a. NO_2 b. H_2O c. C_2H_6 d. NH_3 | e. CO | | | | | | - 7. A single atom of an element weighs 5.81×10^{-23} g. Identify the isotope. - 8. How many hydrogen atoms are in 6.3 mg sample of methane? (Methane is CH₄). ## **Chemical Equations** 9. Balance the following equations: (a) $$_$$ Fe + $_$ Cl₂ \rightarrow $_$ FeCl₃ (b) $$_$$ Fe + $_$ O₂ \rightarrow $_$ Fe₂O₃ (c) _ __FeBr₃ + _ __H₂SO₄ $$\rightarrow$$ ___Fe₂(SO₄)₃ + _ __HBr (d) $$\underline{\hspace{1cm}} C_4H_6O_3 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} \underline{\hspace{1cm}} C_2H_4O_2$$ (e) $$_C_2H_4 + __O_2 \rightarrow __CO_2 + __H_2O$$ (f) _ _H_2SiCl_2 + _ _H_2O $$\rightarrow$$ ___H_8Si_4O_4 + _ _HCl (g) $$_C_7H_9 + _ HNO_3 \rightarrow _C_7H_6(NO_2)_3 + _ H_2O$$ (h) $$_C_5H_8O_2 + _ NaH + _HCl \rightarrow _C_5H_{12}O_2 + _NaCl$$ ## <u>Methodology for Reaction Stoichiometry</u> <u>Problems</u> - 1. Write a balanced chemical reaction - 2. Convert given value(s) into moles (you may have to ID the limiting reagent) - 3. Use reaction coefficients as a molar ratio - 4. Convert moles of your unknown into the desired units Limiting Reagent ⇒ Limits the amount of product that is produced due to running out 1st - The limiting reagent is used to determine the maximum yield of product/s aka the theoretical yield and the maximum consumption of reactants aka the theoretical consumption ## **Identifying Limiting Reagents:** - 1. Convert all given values of reactants into moles - 2. Divide each mole value by the coefficient - 3. The smallest number identifies the LR