Name:	Date:	CHEM 1A
Monday, October 7, 2019 – Stoichiometry Part 1 (Chapter 3)		
I. Warm-Up – Compound X_2Y is 60% X by mass. Calcula	te the percent Y by mass o	f the compound XY ₃ ?
II. What is a mole? A mole is a number; it is	Molar Mass/Atomic I	Mass –
of something. (Hint: You will need your periodic table for these problems.)	Motar Mass/Monte	rass =
1. How many moles in 5.23×10 ²³ atoms?	Average Atomic Mas.	s =
1. How many moles in 5.25×10 atoms.		
2. H	Percent by mass =	
2. How many moles of copper in 3.20 g?		
3. How many moles of O in 3.4 mol of CuSO ₄ ?		
4. Average Atomic Mass Values - Three naturally occurr amu, ⁴⁰ K, 39.963999 amu, and ⁴¹ K. The natural abunda		
respectively. Determine the atomic mass of ⁴¹ K.		
5. In a sample of 200 chlorine atoms, it is found that 151 a isotope. What is the other naturally occurring isotope of	` , , , , , , , , , , , , , , , , , , ,	49 are another
6. For which of the following compounds does 1.00 g repr	esent $3.32 \times 10^{-2} \text{ mol}$?	
a. NO_2 b. H_2O c. C_2H_6 d. NH_3	e. CO	

- 7. A single atom of an element weighs 5.81×10^{-23} g. Identify the isotope.
- 8. How many hydrogen atoms are in 6.3 mg sample of methane? (Methane is CH₄).

Chemical Equations

9. Balance the following equations:

(a)
$$_$$
 Fe + $_$ Cl₂ \rightarrow $_$ FeCl₃

(b)
$$_$$
 Fe + $_$ O₂ \rightarrow $_$ Fe₂O₃

(c) _ __FeBr₃ + _ __H₂SO₄
$$\rightarrow$$
 ___Fe₂(SO₄)₃ + _ __HBr

(d)
$$\underline{\hspace{1cm}} C_4H_6O_3 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} \underline{\hspace{1cm}} C_2H_4O_2$$

(e)
$$_C_2H_4 + __O_2 \rightarrow __CO_2 + __H_2O$$

(f) _ _H_2SiCl_2 + _ _H_2O
$$\rightarrow$$
 ___H_8Si_4O_4 + _ _HCl

(g)
$$_C_7H_9 + _ HNO_3 \rightarrow _C_7H_6(NO_2)_3 + _ H_2O$$

(h)
$$_C_5H_8O_2 + _ NaH + _HCl \rightarrow _C_5H_{12}O_2 + _NaCl$$

<u>Methodology for Reaction Stoichiometry</u> <u>Problems</u>

- 1. Write a balanced chemical reaction
- 2. Convert given value(s) into moles (you may have to ID the limiting reagent)
- 3. Use reaction coefficients as a molar ratio
- 4. Convert moles of your unknown into the desired units

Limiting Reagent ⇒ Limits the amount of product that is produced due to running out 1st - The limiting reagent is used to determine the maximum yield of product/s aka the theoretical yield and the maximum consumption of reactants aka the theoretical consumption

Identifying Limiting Reagents:

- 1. Convert all given values of reactants into moles
- 2. Divide each mole value by the coefficient
- 3. The smallest number identifies the LR