_____ Date: _____

Monday, October 7, 2019 – Stoichiometry Part 1 (Chapter 3)

I. Warm-Up – Compound X₂Y is 60% X by mass. Calculate the percent Y by mass of the compound XY₃?

Assume 100g of X₂Y, therefore 60g in X₂Y and 40g of Y. If one unit of X is 30g, and one unit of Y is 40g in X₂Y, then the percent of Y in XY₃ is given by $\frac{40+40+40}{30+40+40+40} \times 100\% = 80\%$ *Y in XY*₃.

II. What is a mole? A mole is a number; it is
6.022 x 10²³ of something.
(*Hint: You will need your periodic table for these problems.*)

- 1. How many moles in 5.23×10^{23} atoms? $5.23 \times 10^{23} atoms \left(\frac{1 \ mol}{6.0224 \times 10^{23} atoms}\right) = 0.868 \ mol$
- 2. How many moles of copper in 3.20 g? $3.20 g Cu \left(\frac{1 \ mol \ Cu}{63.55 \ g \ Cu}\right) = 0.0504 \ mol \ Cu$
- 3. How many moles of O in 3.4 mol of CuSO₄? (4 mol 0)

 $3.4 g CuSO_4 \left(\frac{4 mol 0}{1 mol CuSO_4}\right) = 14 mol 0$

Molar Mass/Atomic Mass = The mass of a mole of objects (g/mol = amu) 1 mole of C weighs 12.011 grams

Average Atomic Mass = The sum of the masses of an atoms isotopes, each multiplied by its natural abundance

Percent by mass = mass X/total Mass

- 4. Average Atomic Mass Values Three naturally occurring isotopes of potassium are ³⁹K, 38.963707 amu, ⁴⁰K, 39.963999 amu, and ⁴¹K. The natural abundances of ³⁹K and ⁴¹K are 93.2581% and 6.7302%, respectively. Determine the atomic mass of ⁴¹K.
- 39 K \Rightarrow 93.2581% \Rightarrow 38.963707 amu

 40 K ⇒ 100% - 93.2581% - 6.7302% = 0.0117% ⇒ 39.963999 amu

 $^{41}\text{K} \Rightarrow 6.7302\% \Rightarrow ? \text{ amu}$

Average Atomic Mass = (fraction of isotope A)(mass of isotope A) + (fraction of isotope B)(mass of isotope B) + etc.

39.098 amu = (0.932581)(38.963707 amu) + (0.000117)(39.963999 amu) + (0.067302)(X amu)Atomic Mass of ⁴¹K \Rightarrow 40.957 amu

5. In a sample of 200 chlorine atoms, it is found that 151 are ³⁵Cl (34.969 amu), and 49 are another isotope. What is the other naturally occurring isotope of chlorine?

Average Atomic Mass = (fraction of Cl-35)(mass of Cl-35) + (fraction of Cl-X)(mass of isotope Cl-X) + etc. 35.453 amu = (151/200)(34.969 amu) + (49/200)(mass of Cl-X)Mass of Cl-X) = 36.945 amu Therefore the other isotope is Cl 27

Therefore the other isotope is Cl-37

6. For which of the following compounds does 1.00 g represent 3.32×10^{-2} mol?

a. NO₂ b. H_2O c. C_2H_6 d. NH₃ e. CO

 $1.00g/3.32 \times 10^{-2} \text{ mol} = 30.12 \text{ g/mol} = \text{molar mass of ethane}$

7. A single atom of an element weighs 5.81×10^{-23} g. Identify the isotope. $\frac{5.81 \times 10^{-23} \text{g}}{1 \text{ atom}} \times \frac{6.022 \times 10^{-23} \text{ atoms}}{1 \text{ mol}} = 34.9 \text{ g/mol} \Rightarrow {}^{35}\text{Cl}$

8. How many hydrogen atoms are in 6.3 mg sample of methane? (Methane is CH₄). 6.3 mg CH₄ $x \frac{1 g}{1000 mg} x \frac{1 mole CH_4}{16.042 g} x \frac{4 mole H}{1 mole CH_4} x \frac{6.022 x 10^{23} atoms}{1 mole H} = 9.5 x 10^{20} atoms$

Chemical Equations 9. Balance the following equations:

9. Balance the following equations:	Methodology for Reaction Stoichiometry
(a) $_2_Fe + _3_Cl_2 \rightarrow _2_FeCl_3$	Problems
(b) 4 Fe + 3 O ₂ \rightarrow 2 Fe ₂ O ₃	 Write a balanced chemical reaction Convert given value(s) into moles (you may have to ID the limiting reagent) Use reaction coefficients as a molar ratio Convert moles of your unknown into the desired units
(c) <u>2</u> FeBr ₃ + <u>3</u> H ₂ SO ₄ \rightarrow Fe ₂ (SO ₄) ₃ + <u>6</u> HBr	
(d) $_C_4H_6O_3 + _H_2O \rightarrow _2_C_2H_4O_2$	<u>Limiting Reagent</u> \Rightarrow Limits the amount of product that is produced due to running out 1st - The limiting reagent is used to determine the maximum yield of product/s aka the theoretical yield and the maximum consumption of reactants aka the theoretical consumption
(e) $\underline{C_2H_4} + \underline{3}_0 \rightarrow \underline{2}_{CO_2} + \underline{2}_{H_2O_2}$	<i><u>Identifying Limiting Reagents:</u></i> 1. Convert all given values of reactants into moles
(f) <u>14</u> _H ₂ SiCl ₂ + <u>4</u> _H ₂ O \rightarrow <u>H₈Si₄O₄ + <u>28</u>_HCl</u>	 Divide each mole value by the coefficient The smallest number identifies the LR
(g) $_C_7H_9 + _3_HNO_3 \rightarrow _C_7H_6(NO_2)_3 + _3_H_2O$	

Г

(h) $_C_5H_8O_2 + _2_NaH + _2_HCl \rightarrow _C_5H_{12}O_2 + _2_NaCl$