Name: \qquad Date: \qquad
Monday, October 7, 2019 - Stoichiometry Part 1 (Chapter 3)
I. Warm-Up - Compound $\mathrm{X}_{2} \mathrm{Y}$ is $60 \% \mathrm{X}$ by mass. Calculate the percent Y by mass of the compound XY_{3} ?

Assume 100 g of $\mathrm{X}_{2} \mathrm{Y}$, therefore 60 g in $\mathrm{X}_{2} \mathrm{Y}$ and 40 g of Y . If one unit of X is 30 g , and one unit of Y is 40 g in $\mathrm{X}_{2} \mathrm{Y}$, then the percent of Y in XY_{3} is given by $\frac{40+40+40}{30+40+40+40} \times 100 \%=80 \%$ Y in $X Y_{3}$.
II. What is a mole? A mole is a number; it is 6.022×10^{23} of something.
(Hint: You will need your periodic table for these problems.)

1. How many moles in 5.23×10^{23} atoms?
5.23×10^{23} atoms $\left(\frac{1 \mathrm{~mol}}{6.0224 \times 10^{23} \text { atoms }}\right)=0.868 \mathrm{~mol}$
2. How many moles of copper in 3.20 g ?

Molar Mass/Atomic Mass $=$ The mass of a mole of objects $(\mathrm{g} / \mathrm{mol}=\mathrm{amu})$
1 mole of C weighs 12.011 grams
Average Atomic Mass $=$ The sum of the masses of an atoms isotopes, each multiplied by its natural abundance

Percent by mass $=$ mass $\mathrm{X} /$ total Mass

$$
3.20 \mathrm{~g} \mathrm{Cu}\left(\frac{1 \mathrm{~mol} \mathrm{Cu}}{63.55 \mathrm{~g} \mathrm{Cu}}\right)=0.0504 \mathrm{~mol} \mathrm{Cu}
$$

3. How many moles of O in 3.4 mol of CuSO_{4} ?
$3.4 \mathrm{~g} \mathrm{CuSO}_{4}\left(\frac{4 \mathrm{~mol} \mathrm{O}_{1}}{1 \mathrm{~mol} \mathrm{CuSO}_{4}}\right)=14 \mathrm{~mol} \mathrm{O}$
4. Average Atomic Mass Values - Three naturally occurring isotopes of potassium are ${ }^{39} \mathrm{~K}, 38.963707$ amu, ${ }^{40} \mathrm{~K}, 39.963999 \mathrm{amu}$, and ${ }^{41} \mathrm{~K}$. The natural abundances of ${ }^{39} \mathrm{~K}$ and ${ }^{41} \mathrm{~K}$ are 93.2581% and 6.7302%, respectively. Determine the atomic mass of ${ }^{41} \mathrm{~K}$.
${ }^{39} \mathrm{~K} \Rightarrow 93.2581 \% \Rightarrow 38.963707 \mathrm{amu}$
${ }^{40} \mathrm{~K} \Rightarrow 100 \%-93.2581 \%-6.7302 \%=0.0117 \% \Rightarrow 39.963999 \mathrm{amu}$
${ }^{41} \mathrm{~K} \Rightarrow 6.7302 \% \Rightarrow$? amu
Average Atomic Mass $=($ fraction of isotope $A)($ mass of isotope A $)+($ fraction of isotope $B)($ mass of isotope $B)$ + etc.
$39.098 \mathrm{amu}=(0.932581)(38.963707 \mathrm{amu})+(0.000117)(39.963999 \mathrm{amu})+(0.067302)(\mathrm{X} \mathrm{amu})$
Atomic Mass of ${ }^{41} \mathrm{~K} \Rightarrow 40.957 \mathrm{amu}$
5. In a sample of 200 chlorine atoms, it is found that 151 are ${ }^{35} \mathrm{Cl}$ (34.969 amu), and 49 are another isotope. What is the other naturally occurring isotope of chlorine?
Average Atomic Mass $=($ fraction of $\mathrm{Cl}-35)($ mass of $\mathrm{Cl}-35)+($ fraction of $\mathrm{Cl}-\mathrm{X})($ mass of isotope $\mathrm{Cl}-\mathrm{X})+$ etc. $35.453 \mathrm{amu}=(151 / 200)(34.969 \mathrm{amu})+(49 / 200)($ mass of Cl-X $)$
Mass of $\mathrm{Cl}-\mathrm{X}$) $=36.945 \mathrm{amu}$
Therefore the other isotope is $\mathrm{Cl}-37$
6. For which of the following compounds does 1.00 g represent $3.32 \times 10^{-2} \mathrm{~mol}$?
a. NO_{2}
b. $\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{C}_{2} \mathrm{H}_{6}$
d. NH_{3}
e. CO
$1.00 \mathrm{~g} / 3.32 \times 10^{-2} \mathrm{~mol}=30.12 \mathrm{~g} / \mathrm{mol}=$ molar mass of ethane
7. A single atom of an element weighs $5.81 \times 10^{-23} \mathrm{~g}$. Identify the isotope.
$\frac{5.81 \times 10^{-23} \mathrm{~g}}{1 \text { atom }} \times \frac{6.022 \times 10^{-23} \text { atoms }}{1 \mathrm{~mol}}=\quad 34.9 \mathrm{~g} / \mathrm{mol} \Rightarrow{ }^{35} \mathrm{Cl}$
8. How many hydrogen atoms are in 6.3 mg sample of methane? (Methane is CH_{4}).

Chemical Equations

9. Balance the following equations:
(a) $_2 _\mathrm{Fe}+\ldots 3 _\mathrm{Cl}_{2} \rightarrow$ _ $2 _\mathrm{FeCl}_{3}$
(b) $_4 _\mathrm{Fe}+\ldots 3 _\mathrm{O}_{2} \rightarrow$ _ $2 _\mathrm{Fe}_{2} \mathrm{O}_{3}$
(c) $_2 _\mathrm{FeBr}_{3}+\ldots 3 _\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots 6 __\mathrm{HBr}$
(d) $\ldots \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}+\ldots \ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(e) $\ldots \mathrm{C}_{2} \mathrm{H}_{4}+\ldots 3 __{-} \mathrm{O}_{2} \rightarrow$ _ 2 _ $^{\mathrm{CO}} \mathrm{C}_{2}+\ldots 2 _\mathrm{H}_{2} \mathrm{O}$
(f) _14__ $\mathrm{H}_{2} \mathrm{SiCl}_{2}+\ldots 4 _\mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{H}_{8} \mathrm{Si}_{4} \mathrm{O}_{4}+{ }_{2} 28 _\mathrm{HCl}$
(g) $_\mathrm{C}_{7} \mathrm{H}_{9}+__{3}{ }_{-} \mathrm{HNO}_{3} \rightarrow _\mathrm{C}_{7} \mathrm{H}_{6}\left(\mathrm{NO}_{2}\right)_{3}+{ }_{2}{ }_{2} \mathrm{H}_{2} \mathrm{O}$

Methodology for Reaction Stoichiometry Problems

1. Write a balanced chemical reaction 2. Convert given value(s) into moles (you may have to ID the limiting reagent)
2. Use reaction coefficients as a molar ratio 4. Convert moles of your unknown into the desired units

Limiting Reagent \Rightarrow Limits the amount of product that is produced due to running out 1 st - The limiting reagent is used to determine the maximum yield of product/s aka the theoretical yield and the maximum consumption of reactants aka the theoretical consumption

Identifying Limiting Reagents:

1. Convert all given values of reactants into moles
2. Divide each mole value by the coefficient
3. The smallest number identifies the $L R$
(h) $_\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}+__{2} _\mathrm{NaH}+__{2}$ _ $\mathrm{HCl} \rightarrow$ _ $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{2}+__{2}$ _ NaCl
