Name: \qquad Date: \qquad CHEM 1A

Monday/Tuesday - October 28 \& 29, 2019 - Properties of Gases \& Gas Stoichiometry: (Chapter 5 Pt 1)

I. Big Idea -

Let's think about the three physical states of substances: solid, liquid and gas. Today we're going to think about gas (Solid and Liquid we'll do in 1C). Chemical properties for gases vary significantly, but physical properties are simpler to talk about: Gases occupy the full volume of

Pressure: 1 atm $=760$ torr $=760 \mathrm{mmHg}$
Temperature: $\mathrm{T}($ Kelvin $)=\mathrm{T}($ Celsius $)+273.15$
STP Conditions: 273.15K (0 C), 1atm
SATP Conditions: 298.15 K (25C), 1atm their containers.Gases also have a pressure and a temperature. By looking at these properties, we can understand the behavior of gases.

11 elements are gases under standard conditions
$\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}, \mathrm{Rn}$

Gases are compressible, and they fill up the space that is available. This implies that the molecules are moving quickly in chaotic motion.

As well as low molar mass compounds such as $\mathrm{HCl}, \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8}$

II. Pressure in Systems

1. A glass column is filled with mercury and inverted in a pool of mercury. The mercury column stabilizes at a height of 735 mm above the pool of mercury. What is the pressure of the atmosphere? 0.967 atm

Barometers

Height $=$ gravity + Pint + Pext
2. Determine the pressure (atm) of the gas in the flask.
a. $\mathrm{h}=0.15 \mathrm{~m}$
b. $\mathrm{h}=0.08 \mathrm{~m}, \mathrm{P}_{\text {atmoshpere }}=1 \mathrm{~atm}$

$h($ in mm$)=\mid \Delta P($ in torr $) \mid$
$h=\left|P_{\text {gas }}-P_{\text {vacuum }}\right|$
$h=0.15 \mathrm{~m}=150 \mathrm{~mm}$
$150=\left|P_{\text {gas }}-0\right|$
$P_{\text {gas }}=150$ torr
150 torr $\frac{1 \mathrm{~atm}}{760 \mathrm{torr}}=0.197 \mathrm{~atm}$

$$
\begin{aligned}
& h(\text { in mm })=\mid \Delta P \text { (in torr) } \mid \\
& h=\left|P_{\text {gas }}-P_{\text {atmosphere }}\right| \\
& h=0.08 \mathrm{~m}=80 \mathrm{~mm} \\
& 80=\left|P_{\text {gas }}-760\right| \\
& P_{\text {gas }}=840 \text { torr } \\
& 840 \text { torr } \frac{1 \mathrm{~atm}}{760 \text { torr }}=1.1 \mathrm{~atm}
\end{aligned}
$$

III. The Ideal Gas Law:

1. What volume (in L) is occupied by 35.2 g of nitrogen at $35^{\circ} \mathrm{C}$ and 0.975 atm ?
$P V=n R T ; m=35.2 \mathrm{~g}, M W=28.02 \mathrm{~g} / \mathrm{mol}$ of N_{2}
$N=35.2 g N 2(1 \mathrm{~mol} / 28.02 \mathrm{~g} \mathrm{~N} 2)=1.26 \mathrm{~mol} \mathrm{~N} 2$
$T=35 \mathrm{C}=35+273.15=308 \mathrm{~K}$
$V=n R T / P=(1.26 \mathrm{~mol})(0.08206 \mathrm{Latm} / \mathrm{mol} \mathrm{K})(308 \mathrm{~K}) /(0.975 \mathrm{~atm})$ $=32.7 \mathrm{~L}$

What makes an ideal gas/ideal conditions?
-High temp
-Low pressure
-Small particle size
-Low interaction btw particles
2. A 36.4 L volume of methane gas is heated from $25^{\circ} \mathrm{C}$ to $88^{\circ} \mathrm{C}$ at constant pressure. What is the final volume of gas?
$\mathrm{V} 1 / \mathrm{T} 1=\mathrm{V} 2 / \mathrm{T} 2$ and therefore $\mathrm{V} 2=\mathrm{V} 1 * \mathrm{~T} 2 / \mathrm{T} 1=(36.4 \mathrm{~L}) *(361.15 \mathrm{~K}) /(298.15 \mathrm{~K})=44.1 \mathrm{~L}$
3. A sample of oxygen gas has a volume of 4.50 L at $27^{\circ} \mathrm{C}$ and 800.0 torr. How many oxygen molecules are in the sample?
\# of molecules can be derived from moles
$P V=n R T \quad n=\frac{P V}{R T} \quad n=\frac{(80 \text { otor } r)(4.5 L)}{\left(62.37 \text { tor } 1 \text { mook } K(300 \mathrm{~K})^{3}\right.} \quad n=0.192 \mathrm{~mol}$
0.192 mol $\times 6.022 \times 10^{23}$ molecules $/ m o l=1.16 \times 10^{23}$ molecules
4. The empirical formula of a gas is $\mathrm{CH}_{3} \mathrm{O}$. If 2.77 g of the gas occupies 1.00 L at exactly $0^{\circ} \mathrm{C}$ at a pressure of 760 Torr, what is the molecular formula of the gas?
A) $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{3}$
B) $\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{O}_{5}$
C) $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{4}$
D) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
E) $\mathrm{CH}_{3} \mathrm{O}$
$\mathrm{PV}=\mathrm{nRT} \Rightarrow(1 \mathrm{~atm})(1 \mathrm{~L})=\mathrm{n}(.8206 \mathrm{~L} * \mathrm{~atm} / \mathrm{mol} * \mathrm{~K})(273 \mathrm{~K}) ; \mathrm{n}=.0446$ moles
$2.77 \mathrm{~g} / \#$ of moles $=62.1 \mathrm{~g} / \mathrm{mol} ; \quad$ EF mass $=12.01+3(1.01)+16=31.03 \mathrm{~g} / \mathrm{mol}$
Multiply by 2 to get $62.1 \mathrm{~g} / \mathrm{mol}$
Therefore, the answer is $2 . \mathrm{C} 2 \mathrm{H} 6 \mathrm{O} 2$.
5. In an experiment, 405 mL of methane gas was collected over water with a total pressure of 785 torr at $30^{\circ} \mathrm{C}$. What is the vapor pressure of water (in torr) at $30^{\circ} \mathrm{C}$ if 0.258 g of methane was collected?

$$
\begin{aligned}
& P_{\text {Total }}=P_{C H_{4}}+P_{H_{2} \mathrm{O}} \\
& P_{C H_{4}}=\frac{n R T}{V}=\frac{\left(0.258 g \frac{1 \mathrm{~mol}}{16.026 \mathrm{~g}}\right)\left(0.08206 \frac{\mathrm{atmL}}{\mathrm{molK}}\right)(30+273 \mathrm{~K})}{0.405 \mathrm{~L}}=0.988 \mathrm{~atm} \frac{760 \mathrm{torr}}{1 \mathrm{~atm}}=
\end{aligned}
$$

751 torr
$P_{\mathrm{H}_{2} \mathrm{O}}=785$ torr -751 torr $=34$ torr
6. A $275.0-\mathrm{mL}$ sample of O_{2} is collected over water at $60.0^{\circ} \mathrm{C}$. The total pressure is 755 torr. What is the volume of the O_{2} at STP ? (The vapor pressure of water at $60^{\circ} \mathrm{C}$ is 149 torr).
(A) 180.0 mL
(B) 224.0 mL
(C) 244.0 mL
(D) 333.0
$\mathrm{mL} \quad$ (E) none of these
$P_{\text {Total }}=P_{\mathrm{O} 2}+P_{\mathrm{H}_{2} \mathrm{O},} \quad P_{\mathrm{O} 2}=755-149=606$ torr. $\quad V 2=V 1 * \frac{P 1 * T 2}{P 2 * T 1}=\frac{(275.0 \mathrm{~mL})(606 \text { torr })(273 \mathrm{~K})}{(760 \text { torr })(333 \mathrm{~K})}=180 \mathrm{~mL}$
7. Calculate the density of Hydrogen Bromide gas in g / L at 733 mmHg and $40^{\circ} \mathrm{C}$.

$$
P V=n R T=>P V=\frac{m}{M_{u}} R T ; \rho=\frac{m}{V} ; \frac{P * M_{u}}{R T}=3.04 \mathrm{~g} / \mathrm{L}
$$

8. A mixture of gases contains 0.31 moles of $\mathrm{CH}_{4}, 0.25$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.29 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ and the total pressure of the system is 1.50 atm . What is the partial pressure of CH_{4} ?
$P(C H 4)=\frac{n(C H 4)}{n(t o t)} P($ tot $)=\frac{(0.31 \mathrm{~mol})}{(0.31 \mathrm{~mol}+0.25 \mathrm{~mol}+0.29 \mathrm{~mol})}(1.50 \mathrm{~atm})=0.55 \mathrm{~atm}$
9. A mixture of oxygen and helium is 92.3% by mass oxygen. What is the partial pressure of oxygen if atmospheric pressure is 745 Torr?
If you had a 100 g sample $\Rightarrow 92.3 \mathrm{~g}$ of O_{2} and 7.7 g of He

$$
\begin{aligned}
& \frac{92.3 \mathrm{~g} \mathrm{O}}{31.998 \mathrm{glmol}}=2.88 \mathrm{~mol} \mathrm{O} \\
& P_{O 2}=X_{O 2} P_{\text {total }}=\left(\frac{2.88 \mathrm{~mol} \mathrm{O}_{2}}{4.80 \text { total mol }}\right) 745 \text { torr }=447 \mathrm{torr}
\end{aligned}
$$

10. Given a cylinder of fixed volume filled with 1 mol of argon gas, which of the following is correct?
(Assume all gases obey the ideal gas law.)
(A) If the temperature of the cylinder is changed from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, the pressure inside the cylinder will double.
(B) If a second mole of argon is added to the cylinder, the ratio T / P will remain constant.
(C) A cylinder of identical volume filled with the same pressure of helium must contain more atoms of gas because He has a smaller atomic radius than argon.
(D) Two of these are correct.
(E) None of these is correct.
11. Which of the following relationships is not true?
(A) $P V=$ constant when temperature and moles of gas are held constant.
(B) $V / T=$ constant when pressure and moles of gas are held constant.
(C) $n T=$ constant when pressure and volume are held constant.
(D) $P / n=$ constant when volume and temperature are held constant.
(E) All of these are true.
12. Consider a sample of neon gas in a container fitted with a movable piston (assume the piston is massless and frictionless). The temperature of the gas is increased from $20.0^{\circ} \mathrm{C}$ to $40.0^{\circ} \mathrm{C}$. The density of neon
(A) increases less than 10%.
(B) decreases less than 10%. (C) increases more than 10%.
(D) decreases more than 10%.
(E) does not change.

IV. Other Equations of State

The ideal gas law does not account for a couple properties of real gases. Real gases _have size_ and feel attraction__

1. Calculate the pressure exerted by 0.5000 mole of N_{2} in a $1.000-\mathrm{L}$ container at $25.0^{\circ} \mathrm{C}$. Use the van der Waals equation. (Use your constant sheet to find a and b). Compare this to the answer you would get using the ideal gas law.

$$
\begin{array}{c|c}
{\left[P+a\left(\frac{n}{V}\right)^{2}\right](V-n b)=n R T} & \text { PV }=\text { nRT }(1+\mathrm{B} / \mathrm{Vm}+ \\
P=\frac{n R T}{(V-n b)}-a\left(\frac{n}{V}\right)^{2} & (0.500 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298.2) \\
& \quad(1 L-(0.500 \mathrm{~mol})(0.0391 \mathrm{Lmol}) \\
& \left(1.39 \frac{\mathrm{atmL} 2}{\mathrm{~mol} 2}\right)\left(\frac{0.500 \mathrm{~mol}}{1.0 \mathrm{~L}}\right)^{2}
\end{array}
$$

$=12.13 \mathrm{~atm}$

V. Gas Stoichiometry

1. Consider the combustion of liquid hexane
$2 \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})+19 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+14 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
If $1.52-\mathrm{g}$ of hexane is combined with 2.95 L of oxygen at 312 K and 890 torr. The carbon dioxide gas is collected at 297 K and 0.930 atm . What volume of carbon dioxide gas will be collected assuming 100% yield?

Need to determine the limiting reagent
$\mathrm{n}_{\mathrm{C} 6 \mathrm{H} 14}=\frac{1.52 \mathrm{~g}}{86.07 \mathrm{~g} / \mathrm{mol}}=0.0177 \mathrm{~mol}$ vs. $\mathrm{n}_{\mathrm{O} 2}=\frac{\mathrm{PV}}{\mathrm{RT}} \frac{(890 \text { torr } / 760 \text { tor/ } / \mathrm{atm})(2.95 \mathrm{~L})}{(0.08206 \mathrm{atmL} / \mathrm{molK})(312 \mathrm{~K})}=0.135 \mathrm{~mol}$
$0.135 / 19<0.0177 / 2$ so $_{2}$ is the LR $\quad 0.135 \mathrm{~mol} \mathrm{O}_{2} \frac{\left(12 \mathrm{~mol} \mathrm{CO}_{2}\right)}{\left(19 \mathrm{~mol}_{2}\right)}=0.0853 \mathrm{~mol} \mathrm{CO}_{2}$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(0.0853 \mathrm{~mol})(0.08206 \mathrm{atmL} / \mathrm{molK})(297 \mathrm{~K})}{(0.93 \mathrm{~atm})}=2.23 \mathrm{~L}$
2. A $3.54-\mathrm{g}$ sample of lead(II) nitrate (molar mass $=331 \mathrm{~g} / \mathrm{mol}$) is heated in an evacuated cylinder with a volume of 1.60 L . The salt decomposes when heated, according to the following equation:
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Assuming complete decomposition, what is the pressure (in atm) in the cylinder after decomposition and cooling to a temperature of 300 . K ? Assume the $\mathrm{PbO}_{(\mathrm{s})}$ takes up negligible volume.

The reaction produces 2 gases so the pressure in the container is the total pressure $\Rightarrow \mathrm{P}_{\text {total }}=\frac{\mathrm{n}_{\text {coar }} \mathrm{RT}}{\mathrm{v}}$

$$
3.54 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \frac{\left(1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)}{\left(331 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)} \mathrm{X} \frac{\left(4 \mathrm{~mol} \mathrm{NO}_{2}+1 \mathrm{~mol} \mathrm{O}_{2}\right)}{2 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0276 \mathrm{~mol} \mathrm{gas}
$$

$$
\mathrm{P}_{\text {total }}=\frac{(0.0267 \mathrm{~mol})(0.08206 \mathrm{atmL} / \mathrm{molK})(300 \mathrm{~K})}{(1.6 \mathrm{~L})}=0.41 \mathrm{~atm}
$$

3. 2.5 mol of O_{2} gas and 3.0 mol of solid carbon, $\mathrm{C}(\mathrm{s})$ are put into a 3.50 -liter container at $23^{\circ} \mathrm{C}$. If the carbon and oxygen react completely to form $\mathrm{CO}(\mathrm{g})$, what will be the final pressure (in atm) in the container at $23^{\circ} \mathrm{C}$?
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
Determine limiting reagent

$2 \mathrm{C}(\mathrm{s})$	$\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{CO}(\mathrm{g})$
3 mole	2.5 mole		0 mole
-3	$-3\left(\frac{1}{2}\right)$		$+3\left(\frac{2}{2}\right)$
0	1 mole		3 mole

$\mathrm{C} \Rightarrow 3 \mathrm{~mol} \mathrm{C} / 2=1.5$	-3	$-3\left(\frac{1}{2}\right)$	$+3\left(\frac{2}{2}\right)$
$\mathrm{O}_{2} \Rightarrow 2.5 \mathrm{~mol} / 1=2.5 \Rightarrow \mathrm{C}$ is the LR	0	1 mole	3 mole

$\Rightarrow \mathrm{P}_{\text {total }}=\mathrm{n}_{\text {total }} \mathrm{RT} / \mathrm{V}$

$$
\begin{aligned}
& \text { Since there is } 4 \mathrm{~mol} \text { of gas in the container } \quad \mathrm{P}_{\text {total }}=\frac{(4 \mathrm{~mol})\left(\frac{0.08206 \mathrm{atmL}}{\mathrm{molK}}\right)(23+273 \mathrm{~K})}{3.5 \mathrm{~L}} \\
& \mathrm{P}_{\text {total }}=27.8 \mathrm{~atm}
\end{aligned}
$$

4. The valve between two tanks is opened. See below. Calculate the total pressure in the container after the valve is opened.

Each gas is affected by the valve opening $\Rightarrow \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$ where n and T are
 constant

$$
\begin{aligned}
& \text { solving for } P_{2} \Rightarrow P_{2}=\frac{P_{1} V_{1}}{V_{2}} \\
& \text { for } \mathrm{O}_{2} \Rightarrow P_{2}=\frac{(8.64 \mathrm{~atm})(3.25 \mathrm{~L})}{(3.2 \mathrm{~L}+2.48 \mathrm{~L})} \\
& \mathrm{P}_{2}=4.9 \mathrm{~atm} \\
& \text { for } \mathrm{Ne} \Rightarrow \mathrm{P}_{2}=\frac{(5.4 \mathrm{~atm})(2.48 \mathrm{~L})}{(3.25 \mathrm{~L}+2.48 \mathrm{~L})}=2.3 \mathrm{~atm} \\
& \text { Total pressure }=4.9 \mathrm{~atm}+2.3 \mathrm{~atm}=7.2 \mathrm{~atm}
\end{aligned}
$$

