Name: \qquad Date: \qquad CHEM 1A

Monday/Tuesday November 4 \& 5, 2019 - Kinetic Model of Gases \& Effusion and Diffusion (Chapter 5 Pt 2)

I. Recall \& Warm-Up

1. What is the difference between scientific theory and scientific law?
2. Which gas is most dense at 1 atm and $25^{\circ} \mathrm{C}$?
(A) hydrogen cyanide
(D) carbon monoxide
(B) hydrogen sulfide
(E) nitrogen dioxide
(C) nitrogen monoxide
3. Which of the following will have the greatest average kinetic energy?
(a) $2.4-\mathrm{L}$ of He at 1 atm and $25^{\circ} \mathrm{C}$
(b). $5.9-\mathrm{L}$ of Ne at 2 atm and $20^{\circ} \mathrm{C}$

Assumptions Needed for the Kinetic Theory of Gases
 Theory of Gases
 -

8. Calculate the temperature at which the average velocity of $\mathrm{Ar}(\mathrm{g})$ equals the average velocity of $\mathrm{Ne}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$.
9. A plot of the Maxwell distribution against speed for different molecules shows that
A) heavy molecules have a higher average speed.
B) light molecules have a very narrow range of speeds.
C) heavy molecules have a wide range of speeds.
D) light molecules have a lower average speed.
E) heavy molecules travel with speeds close to their average values.

III. Effusion and Diffusion

10. It takes 12 seconds for 8 mL of hydrogen gas to effuse through a porous barrier at STP. How long will it take

Diffusion - The spreading of one substance
through another substance.

Effusion - The escape of a substance (particularly a gas) through a small hole.

Graham's Law of Effusion

If the numbers of particles are the same then** for the same volume of carbon dioxide to effuse at STP?
11. The effusion rate of H_{2} gas is 6.45 times faster than that of a certain noble gas (both gases are at the same temperature). What is the noble gas?
12. The following experiment was carried out using a newly synthesized chlorofluorocarbon. Exactly 50 mL of the gas effused through a porous barrier in 157 s . The same volume of argon effused in 76 s under the same conditions. Which compound is the chlorofluorocarbon?
(A) $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}$
(B) $\mathrm{C}_{2} \mathrm{ClF}_{5}$
(C) $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$
(D) $\mathrm{C}_{2} \mathrm{Cl}_{5} \mathrm{~F}$
(E) $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$
13. Order the following according to increasing rate of effusion: $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{CH}_{4}$
14. Determine if each of the following statements are true or false:
a. Gases tend to behave more ideally at high temperatures and pressures
b. CO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ gas have the same average kinetic energy at STP
c. The distance between gas particles is much larger than the size of the gas particles is one of the assumptions of kinetic molecular theory
d. 1 mol of CO at 1 atm and $25^{\circ} \mathrm{C}$ has a greater collision frequency than 1 mol of N_{2} at 0.9 atm and $25^{\circ} \mathrm{C}$.
e. In the van der Waals equation the b value increases as the forces between the gas particles gets stronger.

