\qquad Date: \qquad
Monday/Tuesday, November 18 \& 19, 2019 - Quantum Chemistry \& Periodic Trends (Chapter 12 Part 2)
I. Warm-Up - Define the words wavefunction and probability density. Also draw a Bohr model of the atom and discuss the important takeaways from the model.
II. Quantum Numbers, Orbitals, \& Electron Configurations

Quantum Number	Formal Name	What it tells you	Range of Values
\mathbf{n}			
\mathbf{l}			
$\boldsymbol{m}_{\boldsymbol{l}}$			
$\boldsymbol{m}_{\boldsymbol{s}}$			

Orbitals

s orbitals
p orbitals

f orbitals

	\boldsymbol{n}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{s}
1 s	1	0	0	$1 / 2,-1 / 2$
2 s	2	0	0	$1 / 2,-1 / 2$
2 p	2	1	$1,0,-1$	$1 / 2,-1 / 2$
3 s	3	0	0	$1 / 2,-1 / 2$
3 p	3	1	$1,0,-1$	$1 / 2,-1 / 2$
3 d	3	2	$2,1,0,-1,-2$	$1 / 2,-1 / 2$
4 s	4	0	0	$1 / 2,-1 / 2$
4 p	4	1	$1,0,-1$	$1 / 2,-1 / 2$
4 d	4	2	$2,1,0,-1,-2$	$1 / 2,-1 / 2$
4 f	4	3	$3,2,1,0,-1,-2,-3$	$1 / 2,-1 / 2$

1. How many electrons in any one atom can have the following quantum numbers?
a. $n=5$
b. $n=6, l=0$
c. $n=4, l=2$
d. $n=4, l=3, m_{l}=-2$
e. $n=2, l=0, m_{l}=0, m_{s}=-1 / 2$
2. Write the ground state electron configuration to determine the number of unpaired electrons in each of the following: $\mathrm{a} . \mathrm{Cl}$

$$
\text { b. } \mathrm{Ni}
$$

c. Cr
d. Ag
e. Te^{2-}
f. Ba^{2+}

Order of Orbital Filling
Electron Configuration:

Pauli Exclusion Principle:

3. Which of the following is not determined by the principal quantum number, n, of the electron in a hydrogen atom?
a. the size of the corresponding atomic orbital(s)
b. the shape of the corresponding atomic orbital(s)
c. the energy of the electron
d. the minimum wavelength of the light needed to remove the electron from the atom.
e. All of the above are determined by n.
4. Determine if each of the following corresponds with an excited state or ground state electron configuration.
a. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
b. $[\mathrm{Kr}] 6 \mathrm{~s}^{1}$
c. $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$

III. Periodic Trends

5. Which of the following has the largest radius?
a. Al or Si
b. F or Cl
c. S or S^{2-}
d. K or K^{+}

$\begin{array}{\|c\|} \hline 1 \\ \mathbf{H} \\ \hline \end{array}$																	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \end{gathered}$
3	4											,	C	7		9	10
Li	Be											B	C	N	0	F	Ne
6.941	(20120											${ }^{208811}$	${ }_{120107}^{\text {c, }}$	14	\% 15.9094		${ }_{201787}$
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.989770	$\frac{3482050}{}$											22.8081598	28.0855	30, 3 年61	${ }^{32066}$	${ }_{3}^{354527}$	${ }^{\text {¢ }}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
${ }^{39} 9$	${ }_{40.078}$	${ }_{4}^{4.455910}$	${ }_{47.867}^{72}$	S0.915	${ }_{51} 1.996$	S4983099	5	58.931200	58.694	${ }_{63546}$	${ }_{6539}$	${ }_{60.723}$	72.6	${ }_{74.42100}$	$\frac{88}{78 \%}$	$\frac{78}{7904}$	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
${ }_{85} 8.4678$	\%	${ }_{8 \times 20}$	9	2200638	959	(98)	$\frac{20107}{107}$	22, 20 So	P10642	1078062	112411	${ }^{1148818}$	118%	${ }_{\text {121780 }}$	${ }^{12760}$	265047	${ }^{\text {x2129 }}$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
13220854	${ }_{137327}$	138	${ }^{1788.49}$		18	1886.207	$\stackrel{10273}{190}$	${ }_{102217}$	${ }_{195078}^{1087}$	16.9605s	${ }_{2}^{40059}$	${ }_{2041283}$	${ }_{2}^{2072}$	208,98008	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
(223)	(226)	(227)	(261)	(262)	(26)	(262)	(265)	(26)	(269)	(272	(27						

6. Which of the following has the greatest ionization energy?
a. K or Ca
b. P or As
c. Sr or Sr^{2+}
7. Which of the following has the most negative electron affinity?
a. Br or Kr
b. C or Si

The successive ionization energies for an unknown element are:
$I_{1}=896 \mathrm{~kJ} / \mathrm{mol}$
$I_{2}=1752 \mathrm{~kJ} / \mathrm{mol}$
$I_{3}=14,807 \mathrm{~kJ} / \mathrm{mol}$
$I_{4}=17,948 \mathrm{~kJ} / \mathrm{mol}$
Which family does the unknown element most likely belong?

First Ionization Energy:

Electron Affinity:

