Name:	Date	:	CHEM 1A

Monday/Tuesday, November 18 & 19, 2019 – Quantum Chemistry & Periodic Trends (Chapter 12 Part 2)

I. **Warm-Up** – Define the words *wavefunction* and *probability density*. Also draw a Bohr model of the atom and discuss the important takeaways from the model.

Wavefunction (ψ) = A solution of the Schrödinger equation; the probability amplitude.

Probability Density (ψ^2) = A function that, when multiplied by volume of the region, gives the probability that the particle will be found in that region of space, between 0 and 1.

The Bohr model explains the Rydberg formula for spectral line emission of hydrogen.

II. Quantum Numbers, Orbitals, & Electron Configurations

11. Qu	direction (direction)	· ·			
Quantum	Formal Name	What it tells you	Range of		
Number			Values		
n	principal quantum number	the size and energy of the orbital	1 to infinity		
l	angular momentum quantum number	shape of the subshell	0 to $n-1$		
$m_{_l}$	magnetic quantum number	orbital orientation	<i>−l to +l</i>		
m _s	electron spin quantum number	Spin of the electron	+1/2 or -1/2		

Orbitals

s orbitals \Rightarrow 1 = 0 \Rightarrow 1 possible orientation (m_l = 0)

p orbitals \Rightarrow 1 = 1 \Rightarrow 3 possible orientations (m₁ = -1, m₁ = 0, m₁ = +1)

d orbitals \Rightarrow 1 = 2 \Rightarrow 5 possible orientations (m₁ = -2, m₁ = -1, m₁ = 0, m₁ = +1, m₁ = +2)

f orbitals \Rightarrow 1 = 3 \Rightarrow 7 possible orientations (m₁ = -3, m₁ = -2, m₁ = -1, m₁ = 0, m₁ = +1, m₁ = +2, m₁ = +3)

- 1. How many electrons in any one atom can have the following quantum numbers?
 - a. $n = 5 \Rightarrow 50$
 - b. $n = 6, l = 0 \implies 2$
 - c. $n = 4, l = 2 \implies 10$
 - d. $n = 4, l = 3, m_l = -2 \implies 4$
 - e. n = 2, l = 0, $m_l = 0$, $m_s = -1/2 \implies 1$
- 2. Write the ground state electron configuration to determine the number of unpaired electrons in each of the following: a. Cl b. Ni c. Cr d. Ag e. Te^{2-} f. Ba^{2+} $Cl \Rightarrow 1s^22s^22p^63s^23p^5 \Rightarrow 1$ unpaired $Ni \Rightarrow [Ar]4s^23d^8 \Rightarrow 2$ unpaired
 - $NI \Rightarrow [Ar]4s^230^{\circ} \Rightarrow 2 \text{ unpaired}$
 - $Cr \Rightarrow [Ar]4s^13d^5 \Rightarrow 6 \text{ unpaired}$
 - $Ag \Rightarrow [Kr]5s^14d^{10} \Rightarrow 1 \text{ unpaired}$
 - $Te^{2-} \Rightarrow [Kr] 5s^24d^{10}5p^6 \Rightarrow 0 \text{ unpaired}$
 - $Ba^{2+} \Rightarrow [Kr] 5s^24d^{10}5p^6 \Rightarrow 0 \text{ unpaired}$

Order of Orbital Filling

Electron Configuration: A list of an atom's occupied orbitals with the number of electrons that each contains. In the **ground state** the electrons occupy atomic orbitals in such a way that the total energy of the atom is a minimum.

Pauli Exclusion Principle: No more than two electrons may occupy any given orbital. When two electrons occupy one orbital, the spins must be paired.

- 3. Which of the following is *not* determined by the principal quantum number, *n*, of the electron in a hydrogen atom?
- a. the size of the corresponding atomic orbital(s)
- b. the shape of the corresponding atomic orbital(s)
- c. the energy of the electron
- d. the minimum wavelength of the light needed to remove the electron from the atom.
- e. All of the above are determined by n.
 - 4. Determine if each of the following corresponds with an excited state or ground state electron configuration.

1

- a. $[Ar]4s^24p^5 \Rightarrow excited$
- b. $[Kr]6s^1 \Rightarrow excited$
- c. $[Ne]3s^23p^4 \Rightarrow ground$

III. Periodic Trends

- 5. Which of the following has the largest radius?
 - a. Al <u>or</u> Si
 - b. F <u>or</u> Cl
 - c. S $\overline{\text{or}}$ S²
 - d. K or K+

Н																	He	
Hydrogen 1.00794																	Helium 4.003	
3	4]										5	6	7	8	9	10	
Li	Be											В	C	N	О	F	Ne	
6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797	
11	12	1										13	14	15	16	17	18	
Na	Mg											Al	Si	P	S	Cl	Ar	
Sodium 22.989770	Magnesium 24.3050											Alaminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	51.9961	Manganese 54.938049	55.845	Cobult 58.933200	Nickel 58.6934	63.546	Zinc 65.39	Gallium 69.723	72.61	Arsenic 74.92160	Selenium 78.96	79.904	Krypton 83.80	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
Rubidium 85,4678	Strontium 87.62	Yttrium 88,90585	Zirconium 91,224	Niebium 92,90638	Molybdenum 95,94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107,8682	Cadmium 112,411	Indium 114.818	Tin 118,710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131.29	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	
Cesium 132.90545	Barium 137.327	Lanthunum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	192.217	Platinum 195.078	Gold 196,96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)	
87	88	89	104	105	106	107	108	109	110	111	112	113	114					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt										
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)							
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				Cerium	Prascodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ynorbium	Lutetium	

- 6. Which of the following has the greatest ionization energy?
 - a. K or Ca
 - b. P or As
 - c. Sr or Sr^{2+}
- 7. Which of the following has the most negative electron affinity?
 - a. <mark>Br</mark> <u>or</u> Kr
 - b. C or Si

The successive ionization energies for an unknown element are:

 $I_1 = 896 \text{ kJ/mol}$

 $I_2 = 1752 \text{ kJ/mol}$

 $I_3 = 14,807 \text{ kJ/mol}$

 $I_4 = 17,948 \text{ kJ/mol}$

Which family does the unknown element most likely belong? Group 2 - When you notice a jump in the order of magnitude going from 10^3 to 10^4 this implies that all of the valence electrons have been removed and the 10^4 magnitude would be referring to the core – the first and second ionization energies are within reason however the third ionization energy is much higher – therefore there must have been only 2 electrons in the valences shell.

Effective Nuclear Charge (Zeff): The net nuclear charge after considering the shielding caused by other electrons in the atom. Increases as you move right.

Atomic Radii: Half the distance between the centers of neighboring atoms in a solid of a homonuclear molecule. Increases left and down.

First Ionization Energy: The minimum energy required to remove the first electron from the ground state of a gaseous atom, molecule, or ion. X(g) -> X+(g) +e-. Increases right and up.

Electron Affinity: (Eea) The energy change associated with the addition of an electron to a gas-phase atom. $X(g) + e- \Diamond X$ - (g) Increases left and down. (Energy release is negative, F has the lowest EA)