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Name: ____________________________________________________ Date: _________________ MATH 4A 

Linear Algebra Review Guide 

This guide is meant to be a supplement to your studies – make sure to review your old exams, homework sets, 

in-class notes, and check with your professor to best prepare for your exam.  Happy studying!  -- Kevin 

Kayla’s Order of Topics (according to the review sheet): 

Pre-Exam 2 

I. Systems of Linear Equations 

a. Row Operations, Gaussian Elimination & Forms of Solutions  (#1) 

II. Matrix Operations – Adding, subtraction, scalar mult., transpose (#4) 

III. Diagonal, Triangular, and Symmetric Matrices (#4) 

IV. Matrix Transformations (#8) 

V. Matrix Inverses (#5) 

VI. Determinants (#6) 

VII. Vector Spaces & Subspaces (#8) 

a. Linear Combinations and Span, Linear Independence (#3) 

Post-Exam 2 

VIII. Coordinate Vectors and Change of Basis (#9) 

IX. Null, Column, and Row Space (#8) 

X. Eigenvalues and Eigenvectors (#10) 

XI. Diagonalization (#11) 

XII. Linear Transformations, Rank-Nullity Theorem, Equivalence Theorem (#8, 9) 

XIII. Kernel and Range (#7, #8) 

Kevin’s Order of Topics (how these worksheets are written/makes sense in my mind) 

I. How to speak Linear Algebra 

a. Row Operations, Gaussian Elimination & Types of Solutions  (#1) 

b. Systems of Linear Equations in Vector Form, the Matrix Equation Ax = b. (#2) 

c. Linear Independence, Linear Combinations, Basis & Span (#3) 

II. Matrix & Vector Arithmetic/Geometry 

a. Addition, Subtraction, Scalar Multiplication, and Transpose (#4) 

b. Inverses of Matrices & Inverse Theorems (#5) 

c. Determinants for 2x2 and for larger matrices (#6) 

III. The Heart of Linear Algebra 

a. Linear Transformations, onto and one-to-one (#7) 

b. Vector Spaces & Subspaces (#8) 

c. The Invertible Matrix Theorem, Coordinate Vectors and Change of Basis (#9) 

d. Eigenvalues & Eigenvectors (#10) 

IV. Applying Linear Algebra 

a. Diagonalization (#11) 

Not included? – Complex Eigenvalues, Orthogonal Projections, Inner Products, Least Squares 
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Worksheet 1 - Solving Systems of Linear Equations, Gaussian Elimination & Types of Solutions 

A linear equation is any equation that can be written in the form: a1x1 + a2x2 + … anxn = b, where all a’s & b  

can be real or complex numbers 

A linear system is any group of one or more linear equation(s) with the same variables involved 

Some examples:   x + y + z = 1      and   x1 + 2x2 – x4 = 1 

     2x +3y –z = 2      x2 + 2x3 – x4 + x5 = -2 

       x + 2y –z = 4      x2 – 4x3 + x5 = 4 

Any system of linear equations can be written in matrix form: 𝓐𝒙   = 𝒃    

For example the systems above can be written as:   where the matrix A contains the coefficients of the variables 

 
1 1 1
2 3 −1
1 2 2

  
𝑥
𝑦
𝑧
 =  

1
2
4
    and    

1 2 0 0 −1
0 1 2 −1 1
0 1 −4 0 1

 

 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5 
 
 
 
 

=  
1

−2
4

      and the vector x contains the variables. 

An augmented matrix is a shortand where the vector b and the coefficient matrix are placed side-by-side: 

 
1 1 1
2 3 −1
1 2 2

 
1
2
4
    and   

1 2 0 0 −1
0 1 2 −1 1
0 1 −4 0 1

 
1

−2
4

    This form is useful for solving lots of linear equations quickly. 

I. Gaussian Elimination 

1. Rewrite the following augmented matrices in echelon form. 

(a)  
1 1 1
2 3 −1
1 2 2

 
1
2
4
     

 

 

 

 

(b)  
1 −1 1
1 1 0
1 2 −1

 
2
5
4
  

 

 

 

 

 

(c)  
1 2 0 0 −1
0 1 2 −1 1
0 1 −4 0 1

 
1

−2
4

  

 

 

 

 

Elementary Row Operations – in augmented 

matrix form, it is possible to 

-Add a multiple of one row to another row 

-Switch the positions of rows 

-Multiply any row by a (nonzero) constant 

 

Performing any of these operations will not 

change the solutions to the system. We say 

that systems are “row-equivalent” when they 

have the same solution set.  We use these 

properties to try to rewrite the matrix in 

specific forms 

Row Echelon Form (REF) 

(1) All nonzero rows are above any 

rows of all zeros. 

(2) Each leading entry of a nonzero row 

is in a column to the right of the 

leading entry in the row above it. 

(3) All entries in a column below a 

leading entry are zero. 

 Reduced Row Echelon Form (RREF) has 

two more requirements: 

(4) The leading entry in each nonzero 

row is 1. 

(5) Each leading 1 is the only nonzero 

entry in its column. 
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II. Solutions to Linear Equations 

2. Solve the following solutions of equations using Gaussian  

elimination method and determine if the system has a  

unique solution, no solution, or infinitely many solutions. 

(a) 
22

1





yx

yx
 

 

 

 

(b) 

42

5

2







zyx

yx

zyx

 

 

 

 

 

(c) 
22

224





yx

yx
 

 

 

 

(d) 

422

232

1







zyx

zyx

zyx

 

 

 

 

 

(e) 
22

424





yx

yx
 

 

 

 

(f) 

454

22

12







zyx

zyx

zyx

 

 

 

 

 

 

 

Unique Solution - If the coefficient matrix 

reduces to the identity matrix there will be a 

unique (numerical) solution to the system 

 

  

These two lines intersect in a single point. 

 

 

The solution to this system is a single point: 

(1,4,5.) 

4 2 2 4

10

5

5

22

1





yx

yx

42

5

2







zyx

yx

zyx

No Solution – If the system is inconsistent 

there will be no solutions.  A contradiction 

will appear when trying to solve the system. 

 

 

Here the lines are parallel & never intersect.   

 

 

Here maybe two of the planes intersect at 

some line, but not all three planes will. 

22

224





yx

yx

1.0 0.5 0.5 1.0

1

1

2

3

4

422

232

1







zyx

zyx

zyx

Infinitely many solutions - If, after row 

reduction, there are more variables than 

nonzero rows, the system will have a family 

of solutions that can be written in 

parametric form. 

 

 

The two lines coincide, so they have an 

infinite number of intersection points. 

 

 

This system has a 1-parameter solution: it is 

a line in ℝ3
. 

22

424





yx

yx

2 1 1 2

2

2

4

6

454

22

12







zyx

zyx

zyx
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III. More Practice 

3. Determine the values of k such that the system in unknowns x, y and z has: 

i) A unique solution 

ii) No solution 

iii) More than one solution 

 

(a) 𝑥 + 𝑦 + 𝑘𝑧 = 2                  I) 𝑘 ≠ 3 ii) 𝑎𝑙𝑤𝑎𝑦𝑠 𝑕𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 iii) 𝑘 = 3 

3x + 4y + 2z = k  

2x + 3y − z = 1 

 

(b) 𝑥 − 3𝑧 = −3                   i) 𝑘 ≠ 2 , 𝑘 ≠ −5, 𝑘 ≠ 0 ii) 𝑘 = −5 iii) 𝑘 = 2, k = 0 

2x + ky − z = −2  

x + 2y + kz = 1 
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Worksheet 2 - Systems of Linear Equations in Vector Form, the Matrix Equation, & lots of words….. 

Recall: Any system of linear equations can be written in matrix form: 𝓐𝒙   = 𝒃    

or in vector form: 𝒂𝟏𝒙𝟏     + 𝒂𝟐𝒙𝟐     +  … + 𝒂𝒏𝒙𝒏     = 𝒃    

where the vectors in the vector form of the equation are the columns of the matrix A in the matrix form. 

The system on the left is a homogenous system because all the equations 

equal zero.  The system on the right is a non-homogenous system, because 

not all of the equations are equal to zero. 

 

Consider row reduction of the augmented matrix:  

                                The lack of a pivot in the 3rd column indicates a free variable,           

                                   and an infinite number of solutions. 

 

 

We can then write the solution as, letting x3 = t: 

 

 

        This solution is a 1-dimensional subset of ℝ3
. 

Because we got a free variable in our row reduction, we conclude that vectors a1, a2 and a3 are linearly 

dependent.  Also, since we got 2 pivots in our reduced matrix, we can say that these 3 vectors span a 2-

dimensional subset of ℝ3
 (a plane).   

 

This plane will also be called the Column Space of matrix A.  It is also the Span of the set (a1, a2, a3). 

Because we got a free variable in our row reduction process, we have infinitely many solutions to the system. 

The set of all solutions form a 1-dimensional subspace of ℝ3
. Since this system is homogeneous, we call this 

solution set the Null Space of matrix A. 

The solution was written as a vector. The Null Space consists of all multiples of this vector. Geometrically, this 

space is a line in ℝ3
, pictured below.  

 If that all sounded like a bunch of new words and concepts all at once, it was.  

We’re going to build this vocabulary throughout Linear Algebra to describe 

properties of the system, so for now let’s start to get comfortable describing 

solutions to systems of equations using these terms.  

 

 

022

032

0

321

321

321







xxx

xxx

xxx

3

1

1

31

21

321







xx

xx

xxx





















0221

0132

0111



















0000

0310

0401

33

32

31

3

4

xx

xx

xx







t

x

x

x


































1

3

4

3

2

1
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I. Practice 

1. Solve the following systems of equations and determine if the vectors of the system are linearly 

independent or linearly dependent.  If the vectors are linearly dependent, state the dimensions of 

the subset of ℝn 
spanned by the vectors.   

(a)                               Solution:  

 

 

This solution tells us the specific linear combination of a1 a2 and a3 that adds up to the right side vector b. 

(b)                                           Solution:  

 

 

 

There are 2 free variables, so we get a 2-dimensional subset of ℝ5
. 

2. Give working definitions for the following terms. 

(a) Consistent linear system - A linear system with at least one solution. 

(b) Echelon Matrix - A rectangular matrix with three properties:  

(1) All nonzero rows are above each row of zeros.  

(2) The leading entry in each row is in a column to the right of any leading entry in a row above it.  

(3) All entries in a column below a leading entry are 0. 

(c) Free Variable - A variable in a linear system that does not correspond to a pivot column. 

(d) Pivot Position - A position that will contain a leading entry when the matrix is reduced to echelon form 

(e) Homogeneous Equation - An equation of the form 𝐴𝑥 = 0, possibly written as a system of linear 

equations. 

(f) Nonhomogeneous equation - An equation of the form 𝐴𝑥 = 𝑏 with 𝑏 ≠ 0. 

(g) Null Space - (of an mxn matrix A) The set Nul(A) of all solutions to the homogeneous equation 𝐴𝑥 = 0 

(h) Identity Matrix - (denoted by I or I
n
 ) A square matrix with ones of the diagonal and zeros elsewhere. 

 

 

 

 

 

 

 

3

1

1

31

21

321







xx

xx

xxx

44

22

12

532

5432

421







xxx

xxxx

xxx
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Worksheet 3 – Linear Combinations of Vectors, Span, Dimension, & Linear Independence 

A linear combination of a set of vectors (a1, a2, .., an) in ℝm
 is a sum of multiples of those vectors: 

 𝒂𝟏𝒙𝟏     + 𝒂𝟐𝒙𝟐     +  … + 𝒂𝒏𝒙𝒏     = 𝒃    

The span of a set of vectors is the collection of all possible of linear combinations of those vectors. 

A basis is a linearly independent subset of vectors that span the entirety of the space.   

I. Describing Basis & Span 

1. Describe the span of each set. 

(a)  

 

In this case there is only one vector in the set, so the span contains all the constant multiples of this vector.  All 

of these vectors are on a line. Specifically the line y=x.  

(b)  

 

The span is the same line as before, because the new vector is just a multiple of the original, so it adds nothing 

new to the span.  Note that either vector alone could be a basis for set V2. The span of V2 is 1-dimensional, so 

any vector on the line would be a basis.  

(c)   

 

These are not all on one line.  The span is actually all of ℝ2
.  Every vector in ℝ2

 can be written as a combination 

of the vectors in V3, therefore Set V3 is a basis for ℝ2
.   

(d)  

 

This time we have 3 vectors, but the new vector is a combination of the first two, so it adds nothing new to the 

span.  This set spans all of ℝ2 
but is not a basis for ℝ2; 

one of the vectors is a combo of the others, so redundant.  

If we wrote an augmented matrix for these vectors, the RREF would have two pivot columns, and therefore the 

span is 2-dimensional.   

(e)    

 

 

These are vectors from ℝ3 
; if we formed an augmented matrix and row reduced, there are two pivots.  

Therefore the span is a 2-dimensional plane in ℝ3
.  Since the span is 2-dimensional, and 2 independent vectors 

from V5 will form a basis.   
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A set of vectors (a1, a2, .., an ) is linearly independent if the homogenous vector equation   𝒂𝟏𝒙𝟏     + 𝒂𝟐𝒙𝟐     +

 … + 𝒂𝒏𝒙𝒏     = 𝟎    has only the trivial solution x1 = x2 = xn = 0.  If there is some nonzero solution, then one of the 

vectors can be written in terms of the others (redundancy) and the set is linearly dependent.   

II. Determining Linear Independence 

1. Are the following sets of vectors linearly independent?  Describe the span of each set. 

(a)       V1 is linearly independent and spans ℝ2
 

 

 

 

 

(b)       V2 is linearly dependent and spans ℝ2
 

 

Note that the first two vectors were already proven to be independent, and the third one is simply the sum of the 

first two and adds no new information to the span.   

(c)       V3 is linearly independent and spans ℝ3
 

 

 

This set is called the STANDARD BASIS for ℝ3
.  In general, for ℝn

 the standard basis will have n vectors, each 

with a single 1 and zeroes elsewhere, so that they form the nxn identity matrix.  

(d)       V3 is linearly independent  

and spans a 2D subset of ℝ3
 

 

 

 

 

The RREF matrix has a non-pivot column, which means there is a free variable. There are 2 pivot positions, so 

the span of this set must be 2-dimensional (a plane in ℝ3
). This set is linearly dependent. 
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III. More Practice 

2. True or false: any two vectors in ℝ3
 must be linearly independent.   

 

3. True or false: any four vectors in ℝ3 
must span ℝ3

. 

 

 

 

4. Are the vectors v1 = (1,0,0,0), v2 = (1,3,1,3), v3 = (1,2,1,2) linearly independent?  If so, justify why they 

are.  If not, write one of the vectors as a linear combination of the other two.   

 

 

 

 

 

 

 

5. Let v1 = (0,1,1), v2 = (3,1,4), and v3 = (1,-1,0).  Is v3 in span{v1,v2}?  If so, write v3 as a linear 

combination of v1 and v2.  If not, justify why not.   
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Worksheet 4 – Matrix Arithmetic & Special Matrices 

We’ve gotten through vocabulary; today let’s think about arithmetic calculations using matrices.   

A matrix just refers to any rectangular array.  Usually the entries are just numbers, but they can be 

functions or operators or other things as well.  We usually indicate the shape of a matrix as a pair (m x n) 

where m = # of rows, and n = # of columns. 

-You can add and subtract matrices by adding the corresponding elements together.   

-You can multiply by a scalar by multiplying the scalar by every element of the matrix.  For both 

addition/subtraction & scalar multiplication the resulting matrix is the same size as the original matrix. 

-You can multiply two matrices by taking dot products (inner products) to multiply the rows of matrix A by 

the columns of matrix B.  The product of an (m x n) matrix and an (n x l) matrix is an (m x l) matrix.   

-A transpose of a matrix, indicated with a superscript T, is the same matrix with the columns and rows 

switched.  (For example a 3 x 2 matrix would transpose to a 2 x 3 matrix). 

IV. Practicing Matrix Arithmetic 

1. Given the following matrices A, B, C, and D, determine if the following operations can be performed. 

𝐴 =  
1 2 1

1 3 2

1 0 1

         𝐵 =  
1 −3
4 0
2 5

          𝐶 =  
2 0 3

4 1 −2
          𝐷 =  

3 −2 1

1 0 −1

−3 2 1

    

1) 5A    YES  

2) A+B   NO  

3) C+D   NO  

4) A+D   YES  

5) D-2A   YES  

6) AB    YES  

7) BA    NO  

8) BC    YES  

9) CB    YES  

10) AD   YES  

11) B
T
D   YES 
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V. Practicing Vector Arithmetic 

Vectors are 1-row or 1-column matrices and therefore operate by the same rules.   

• Two vectors are said to be orthogonal when their scalar product is zero. 

• The length of a vector (magnitude) can be found by using the Pythagorean Theorem   
𝑣
   =  𝑣

 ∎
𝑣
  

• The angle between vectors can be found using the geometic dot product: 
𝑎
 ∎

𝑏
 =   

𝑎
     

𝑏
   cos 𝜃 

VI. Special Matrices 

1. Triangular Matrices - Given an n × n matrix A  

• A is called upper triangular if all entries below the main diagonal are 0.  

• A is called lower triangular if all entries above the main diagonal are 0.  

Ex.   
1 2 1
0 3 2
0 0 1

         is upper triangular and  
1 0 0
2 3 0
1 1 1

         is lower triangular. 

Note that  • A matrix in REF is upper triangular. 

• The transpose of an upper triangular matrix is lower triangular and vice-versa. 

• The product of two Upper triangular matrices is upper triangular.  

• The product of two Lower triangular matrices is lower triangular 

 

2. Diagonal Matrices - Given an n × n matrix D 

• A matrix is called diagonal if only the diagonal entries are non-zero. If D is a diagonal matrix with 

diagonal entries d1, d2, . . . dn, we may write it as diag(d1, d2, . . . , dn) 

Ex.   
1 0 0
0 3 0
0 0 0

         is diagonal.   

Given two diagonal matrices D = diag(d1, d2, . . . , dn) and E = diag(e1, e2, . . . , en):  

• D + E diag(d1 + e1, d2 + e2 . . . , dn + en) and  DE = diag(d1e1, d2e2 . . . , dnen)  

• For any positive integer k, D
k
 = diag(d1

k
, d2

k
 … ,dn

k
).   

• D is invertible if and only if all the diagonal entries are non-zero and 𝐷−1 = 𝑑𝑖𝑎𝑔(
1

𝑑1
, … ,

1

𝑑𝑛
)  

• Diagonal matrices are both upper and lower triangular. Any matrix which is both upper and lower triangular is diagonal. 

3. Symmetric Matrices - An n × n matrix A is called symmetric if it is equal to its transpose: A = A
T
.  

It is called antisymmetric if it is equal to the negative of its transpose, i. e. A = −A
T
. 

Ex.   
1 2 4
2 2 5
4 5 3

         is symmetric  and  

• Any diagonal matrix and its transpose are symmetric. 

• If A and B are symmetric matrices, then A + B and A − B are also symmetric.  

• For any scalar k, kA is also symmetric.  

• A
T
 is symmetric since (A

T
)

T
 = A, for any matrix A. 
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Worksheet 5 – The Inverse of a Matrix 

The inverse of a square matrix A is another matrix with the following properties: 

Here I represents the identity matrix of the same size as A and A
-1

.  Note that A
-1

 must be a square matrix of 

the same size as A.
 
  Solving the equation 𝓐𝓐−𝟏 = 𝑰 is the same also solving the matrix equation 𝓐𝒙   = 𝒃    

To find the inverse, form an augmented matrix with the coefficient matrix on the left, and the identity matrix on 

the right.  Next, row-reduce until the identity is on the left, and the inverse will be on the right. 

1. Find the inverse A
-1

 of the following matrix A: 

𝐴 =  
1 2 1

2 5 3

1 3 3

  

Using inverse matrices gives us a different way to solve the matrix equation, as shown here: 

2. Find the inverse A
-1

 of the matrix A, and use it find a solution for the vector 𝒙   . 

 

 

 

 

3. Solve the following systems using (a) Gaussian elimination and (b) Finding the inverse of the coefficient 

matrix. 

(a) 3x + y = -5 

2x + 3y = 6 

 

 

(b) x – 2y = -8 

5x + 3y = -1 

 

 

(c) 5x – 2y = 1 

6x + 8y = 22 

 

 

(d) 2x + 3y = 4 

3x + 2y = -4 
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(e) 3x + 2y = -17 

10x + y = 0 

 

 

(f) –x + 2y = 4 

3x + 4y = 38 

 

 

(g) 9x + 4y + 3z = -1 

5x + y + 2z = 1 

7x + 3y + 4z  = 1 

 

 

 

(h) 3x + 4y – 7z = -7 

x – 2y + z =1 

 

 

I. Inverse Matrix Theorems  

Let  𝐴 =  
𝑎 𝑏

𝑐 𝑑
 .   If ad-bc ≠ 0, then A is invertible and 𝐴−1 =  

𝑑 −𝑏

−𝑐 𝑎
 .   

If ad-bc = 0, then A is not invertible. 

(ad-bc) is called the determinant of A, written as det(A), and a 2 x 2 matrix A is 

invertible if and only if det(A) ≠ 0.  

Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are 

either all true or all false. 

(a)  A is an invertible matrix. 

(b)  A is row equivalent to the n x n identity matrix. 

(c)  A has n pivot positions. 

(d) The equation Ax = 0 has only the trivial 

solution. 

(e) The columns of A form a linearly independent 

set. 

(f) The linear transformation x  Ax is one-to-one. 

(g) The equation Ax = b has at least one solution 

for each b in R
n
 . 

(h) The columns of A span R
n
   . 

(i) The linear transformation x  Ax maps R
n
 onto 

R
n
 . 

(j) There is an n x n matrix C such that CA = I.  

(k) There is an n x n matrix D such that AD = I. 

(l)  A
T
 is an invertible matrix.

bAx

bAxAA

bxA


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
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Worksheet 6 – Determinants of Larger n x n Matrices 

The determinant of a square matrix can be calculated in a variety of ways. It has many uses, one of which is to 

determine whether a matrix is invertible.  For a 2x2 matrix, det 𝐴 = det   
𝑎 𝑏

𝑐 𝑑
  = 𝑎𝑑 − 𝑏𝑐.   

For larger dimensional matrices, we need some other methods. 

1. Calculate the determinant of the following matrices  

using all three methods. 

(a) 𝐴 =  
1 2 1

2 5 3

1 3 3

  

 

 

 

 

 

 

(b) 𝐵 =  
2 1 3

0 3 −1

4 −4 0

  

 

 

 

 

 

(c) 𝐶 =  

1 2 0 1

0 4 1 1

−2 2 1 3

4 0 0 −1

  

 

 

 

 

 

 

(d) Determine if the three matrices above are invertible. 

Here are a few convenient rules for determinants:  

det(AB) = det(A)det(B)    det(A
T
)=det(A) 

det(A
-1

) = 1/det(A)    If det(A)=0, the matrix is not invertible 

Α =  

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

  

det 𝐴 =  + 𝑎11  
𝑎𝑠𝑠 𝑎23

𝑎32 𝑎33
 −  𝑎21  

𝑎12 𝑎13

𝑎32 𝑎33
 

+  𝑎31  
𝑎12 𝑎13

𝑎22 𝑎23
  

Laplace Cofactor Expansion - breaks a larger 

square matrix into several smaller pieces, until 

eventually you have a bunch of 2x2 

determinants to evaluate.  Choose a row or 

column to expand on. (Use one with some 

zeroes for ease). Alternate signs, starting with + 

in the upper left, or just use the formula (-1)
(i+j)

 

Row Reduction Method - Using row operations, 

reduce the matrix to echelon form, then the 

determinant is the product of the diagonal 

elements. Keep track of the steps in the row 

reduction, and back out the effects to find the 

original determinant. 

Row Operation Effect on Determinant 

Add row to row No change 

Scalar mult. by k Multiply det by k 

Switch two rows Multiply det by -1 

 

The Basketweaving Shortcut for 3x3 matrices 

Draw the first two columns to the right.  Add 

arrows to the down-right and subtract arrows to 

the down-left (see diagram). 

 

This is formally called the Sarus rule. 
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I. More Practice 

2. If A is a 3 x 3 matrix, and det(a) = 7, what is det(2A)? 

 

3. Let A be a 6 x 6 matrix with det(A) = 2.  If the following row operations are performed to A to create a  

6 x 6 matrix B, what is det(B) equal to? 

 R1  R1 + 3R2 

 R5  R6 + 2R5 

 

4. If A is an invertible matrix and det(A) = 7, what is det(A
-1

)? 

5. Let A be a square matrix.  If det(A) = 5, what is det(A
T
)? 

 

6. Prove that if A is invertible, then det(A
-1

) = 1/det(A). 

 

 

 

 

 

 

7. Let A be a 5 x 5 matrix, and let B be obtained from A by performing the following operations in 

sequence: 

 Multiply the 2
nd

 row by 3 

 Subtract 8 times the 1
st
 row from the 4

th
 row 

 Interchange the 2
nd

 and 5
th

 row 

 Add the new 5
th

 row to the 3
rd

 row 

Express det B in terms of det A.   
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Worksheet 7 – Linear Transformations 

A transformation (or function or mapping) T from ℝn
 to ℝm

 is a rule that assigns to each vector x in ℝn
 a 

vector T (x) in ℝm
.  The set ℝn

 is called the domain of T, and ℝm
 is called the codomain of T. 

The notation [T: ℝn 
→ ℝm

] says the domain of T is ℝn
 and codomain is ℝm

 .  

For x in ℝn
, the vector T (x) in ℝm

 is called the image of x. 

The set of all images T (x) is called the range of T. 

 

In a linear transformation, for each x in ℝn
 , T(x) is  

computed as Ax, where A is an mxn matrix.  

For simplicity, we denote this matrix transformation by [x↦Ax].   

The domain of T is ℝn
 when A has n columns.  The codomain of T is ℝm

 when each column of A has m entries.  

Therefore, an m x n matrix transforms vectors from ℝn
 into vectors from ℝm

. 

I. Applying Matrix Transformations 

1. Given the matrix                       show the results of applying the matrix transformation to the following 

vectors.                              State the domain and range, as well as the kind of transformation. 

(a)   𝑥1 =  
1

0
  

(b)   𝑥2 =  
0

1
  

(c)   𝑥3 =  
1

1
  

This is a shearing transformation. 

 

2. Given the matrix                       show the results of applying the matrix transformation to the following 

vectors.                              State the domain and range, as well as the kind of transformation. 

(d)   𝑥1 =  
1

0
    

(e)   𝑥2 =  
0

1
  

(f)   𝑥3 =  
1

1
   

This matrix is a combination of a rotation through 45° and a stretch 

by a factor of √2. 
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A mapping T:ℝn↦ℝm
 is said to be onto (or surjective) if each b in ℝm

 is the image of at least one x in ℝn
.  In 

other words the codomain of the transformation is the entirety of the range.   

      

 Onto        Not Onto 

A mapping T:ℝn↦ℝm
 is said to be one-to-one (or injective) if each b in ℝm

 is the image of at most one x in ℝn
.  

In other words every x in the domain corresponds to a unique b in the range.   

       

II. Recognizing Onto and One-to-one Transformations 

3. Given the matrix                           State the domain and range, as well as if the transformation is onto or                   

                                                            one-to one.   

This transformation takes a vector from ℝ2
 and maps it to a vector in ℝ3

.  The range of this transformation is 

not the entire 3-dimensional ℝ3
 space. The images must be in a subset of ℝ3

 that has dimension (at most) 2 – a 

plane.
  

 

This transformation is not onto because the Range is not all of ℝ3
. 

 

 

 

 

 

4. Given the matrix                                         show the results 

 of applying  

the matrix transformation to the following vectors 

State the domain and range, as well as if the transformation 

is onto or one-to-one. 

(g)   𝑥4 =

 
 
 
 
 
1

0

0

0

0 
 
 
 
 

   

A couple of quick tests to see if a 

transformation is one-to-one or onto: 

More Columns than Rows? – Not one-to-one 

More Rows than Columns? –Not onto 

 

A transformation is onto if the columns of A 

span ℝm
.  This happens when there is a pivot 

in every row.  

A transformation is one-to-one iff the 

columns are linearly independent.  This 

happens when there is a pivot in every 

column.  


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(h) 𝑥5 =

 
 
 
 
 
0

1

0

0

0 
 
 
 
 

       

(i) 𝑥6 =

 
 
 
 
 
0

0

1

0

0 
 
 
 
 

   and …etc 

This one is a bit harder to visualize, but we are starting with vectors from ℝ5
, and mapping them to 

vectors in ℝ3
.The transformation is definitely not one-to-one because the dimension of the range (at 

most 3) is certainly lower than the domain (5).  The transformation will be onto as long as the set of 

column vectors in the matrix spans all of ℝ3
. This can be checked in the usual way by row reducing the 

matrix and seeing that there are 3 pivot positions in the RREF form 

III. How to tell that a Transformation is Linear 

To be linear, a transformation must have the following properties: 

Closure under addition: 𝑇 𝑢  + 𝑣  = 𝑇 𝑢   + 𝑇 𝑣   for any vectors u and v in the domain of T. 

Closure under scalar multiplication: 𝑇 𝑐𝑢   = 𝑐𝑇 𝑢    for all scalars c and any vector u in the domain of T. 

5. Are the following transformations linear?   

(a) 𝑇 𝑥, 𝑦 = (2𝑥, 𝑥 + 𝑦)  Linear, Domain= ℝ2
, Range = ℝ2

, one-to-one, onto 

(b) 𝑇 𝑥, 𝑦 = (𝑥 − 3𝑦, 𝑥𝑦) Not Linear 

(c) 𝑇 𝑥, 𝑦 = (𝑥, 𝑦, 0) Linear, Domain = ℝ3
, Codomain = 2D subspace of ℝ3

, not one-to-one, not onto  

(d) 𝑇 𝑥, 𝑦, 𝑧 = (2𝑥, 2𝑦, 2) Not linear, T(0) does not equal 0. 

(e) 𝑇 𝑥, 𝑦, 𝑧, 𝑤 = (2𝑥 + 𝑦, 2𝑦 + 𝑧, 2𝑧 + 𝑤) Linear, ℝ4
 to ℝ3

, onto, not one-to-one 

For the ones that are linear, find the matrix representation (in the standard basis). 

Find the dimensions of the Domain and Co-Domain, and determine if the transformation is one-to-one or onto. 

 

IV. More Practice 

6. Find the domain and codomain of the linear transformation T(x) = Ax, when 𝐴 =  
5 7 6 0

1 0 −2 −2
  

 

7. Pretend to redefine addition and scalar multiplication on ℝ2  
as follows:  

 𝑢  + 𝑣  =  𝑢1, 𝑢2 +  𝑣1, 𝑣2 =  𝑢1 + 𝑣1, 0  

𝑘 𝑢   =  𝑢1, 𝑢2 +  𝑣1, 𝑣2 =  𝑘𝑢1, 0  

What vector space axioms no longer hold true?   
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8. Let T: ℝ2 
 ℝ2 

be multiplication by A=  
1 2

−2 −5
  and let e1 and e2 be the standard basis vectors for 

ℝ2
.  Find T(2 e1 + e2) 

 

 

 

 

9. (a) Consider the subset W of ℝ3 
consisting of all vectors of the form (a, a + b, b).  Note that (0,0,0) is in 

W, so W is nonempty.  Show that W is a vector subspace of ℝ3 
(by showing that W is closed under 

addition and scalar multiplication). 

 

 

 

 

 

 

 

(b) Find two vectors v1 and v2 so that W = span{v1, v2}.   

 

 

 

10. (a) Prove that T: ℝ2  
 ℝ2

 given by T(x,y) = (x+3y,x-y) is a linear transformation (by showing T 

satisfies the additivity and homogeneity properties).   

 

 

 

 

 

 

(b) Find the standard matrix of T.   
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Worksheet 8 – Vector Spaces and Subspaces, Null Space (Kernel), and Column Space 

A vector space is a nonempty set of vectors defined by (1) closure under addition, (2) closure under scalar 

multiplication, and (3) contains the zero vector. 

A subspace is a vector space formed from the subset of another vector space.   

I. Determining if a subset is a subspace 

1. Each of the following sets is a subset of a vector space. Determine if the set is also a subspace. 

(a) 𝑉1 =    𝑥, 𝑦, 𝑧  𝜖 ℝ3|𝑧 = 2𝑥 + 2𝑦}     YES  

(b) 𝑉2 =    𝑥, 𝑦, 𝑧  𝜖 ℝ3|𝑧 = 2𝑥 + 2𝑦 + 2}  NO – does not contain zero vector 

(c) 𝑉3 =    𝑥, 𝑦  𝜖 ℝ2|𝑧 = 𝑥2 + 𝑦2 ≤ 1}  NO – fails closure: (1,0) & (0,1) in space; (1,1) or (2,0) not 

(d) 𝑉4 = {𝑓 𝑡 = 𝑎𝑡2 + 𝑏𝑡 + 𝑐  𝜖  𝑃2|𝑎 = 𝑏} YES 

(e) 𝑉5 = {𝑓 𝑥  𝜖 𝐶1|𝑓 ′(𝑥) = 𝑓(𝑥)}   YES 

 

2. Determine which of the following subsets of the vector space  ℝ3 are subspaces and explain. 

(a) The set of S1 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 𝑥𝑦𝑧 = 0. NO – fails closure (1,1,0) & (0,0,1), not (1,1,1) 

(b) The set of S2 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 𝑥 + 𝑦 − 𝑧 = 0.  YES 

(c) The set of S3 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 𝑥 + 𝑦 − 𝑧 = 0 𝑎𝑛𝑑 2𝑦 − 3𝑧 = 0.  YES 

(d) The set of S4 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 𝑥2 − 𝑦2 = 0. NO – fails closure 

(e) The set of S5 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 2𝑦 − 3𝑧 = 0 𝑎𝑛𝑑 2𝑥 − 3𝑦 − 1 = 0. NO – no zero vector 

(f) The set of S6 vectors  𝑥, 𝑦, 𝑧 𝜖 ℝ3 such that 𝑒𝑥 + 𝑒𝑧 = 0. – NO – empty set with no zero vector 

 

II. Types of spaces: Null Space & Column Space 

The Null Space of A (also called the kernel of the linear transformation or Nul(A)) is the set of vectors in 

the domain that get mapped to the zero vector in the co-domain.   

Given the following matrix A:  

 

The null space is found as follows: 
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The Column Space of A (Col(A)) is the span of the columns of A. 

Given the following matrix A:    The column space is defined: 

 

This set of vectors is linearly dependent. We can get the same span by leaving out the column vector that 

corresponds to our free variable in the row-reduced matrix (i.e. the 3
rd

 column). 

So our pared-down set only has 2 vectors, and the span of this set is a  

2-dimensional subspace of ℝ3
 (i.e. a plane).  This new set of 2 vectors is 

 a basis for the column space of A. 

 

The column space of A is this plane in ℝ3
 defined by the span of the basis 

vectors.  All points in Col(A) are linear combinations of the basis vectors.
 
 

(Row space is a similar idea just using the rows as your basis vectors 

instead). 

 

1. Find the Null space and the Column space of the given matrix 

This matrix of a linear transformation from ℝ5↦ℝ3
. 

We can find Nul(A) by writing down the parametric form of the solution. 

There are 2 parameters (s is for x3 and t is for x5). Thus this is a 2-dimensional subspace of ℝ5
.
 
 

     

For the column space, we need the span of the 5 column vectors.  We have a set  

of 5 vectors from ℝ3
.  Columns 3 and 5 don’t need to be included in the Col(A)  

basis since they correspond to free variables in our reduced matrix.  We have 3 

independent vectors in ℝ3
, so the span is a 3-dimensional subspace of ℝ3

 (i.e. all of ℝ3
). 

  

 

 

2. By the Rank-Nullity Theorem,  

𝑅𝑎𝑛𝑘 𝐴 +  𝑁𝑢𝑙𝑙𝑖𝑡𝑦 𝐴 =  𝑛, for an m x n matrix 

Or for a given transformation T: V W: dim⁡(𝑖𝑚 𝑇 + dim⁡(ker⁡(𝑇) = dim⁡(𝑉)  

Find the rank (dim(col(A)) and nullity (dim(Nul(A)) of matrix A above and show that this is true.  

 Rank = 3, Nullity = 2, dim(domain) = 5 
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Worksheet 9 – The Invertible Matrix Theorem, Coordinate Systems and Change of Basis 

I. The Invertible Matrix Theorem 

From last worksheet, you might be starting to realize that this entire course is really just different ways of 

solving the exact same problem (systems of equations) using different words, and it’s confusing because every 

problem looks the same (and you’re not wrong). Because of that though, we can go back and see that some 

statements logically flow from each other, given a square matrix.   

Let A be an n×n matrix, and let T: ℝn
 → ℝn

 be the matrix transformation T(x)=Ax.  The following statements 

are equivalent: 

1. A is invertible. 

2. A has n pivots. 

3. Nul(A)={0}. 

4. The columns of A are linearly independent. 

5. The columns of A span ℝn
 

6. Ax=b has a unique solution for each b in ℝn
 

7. T is invertible. 

8. T is one-to-one. 

9. T is onto.

So when you’re trying to do a proof of sorts, remember that these are all the same statement. 

II. Coordinate Systems and Change of Basis 

Recall from Precalculus: A Cartesian plane is typically defined in terms of rectangular coordinates (x,y), but 

there are times where we want to redefine that same plane in terms of polar coordinates (r,θ), so we convert 

from one set of coordinates to the other.  In 3D, same idea, sometimes we have a 3D space defined by 

rectangular (x,y,z) coordinates, but we can change it to cylindrical or spherical coordinates if we so choose.  

We are going to generalize this idea further in terms of vector spaces, basis, and span. 

Consider: The standard basis for ℝ2  
is   

1
0
  

0
1
  .  Suppose we have a different set of independent vectors from 

ℝ2
 such as   

1
−1

  
−1
1

  .  Is this an alternate basis set for ℝ2
?  Yes!  Any set of n independent vectors form a 

basis for ℝn
.   

1. Rewrite the vector below as a linear combination of (a) the standard basis for ℝ2 
, (b) the alternate basis 

for ℝ2
 as provided above. 

In the standard basis:  

 

In the alternate basis: 
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Worksheet 10 – Eigenvalues & Eigenvectors 

Consider a matrix transformation A that when applied to a vector returns the original vector multiplied by a 

scalar constant: 𝓐𝒙   = 𝝀𝒙   .  We will call the vector of this equation an eigenvector of A, and the scalar an 

eigenvalue of A.  These are actually really rare in algebra, so there are important uses for them. 

To solve this equation, we can rearrange to get (𝓐 − 𝝀𝑰)𝒙   = 𝟎   .  𝜆 is an eigenvalue if and only if this equation 

has a non-trivial solution.  This set of solutions to this equation is Nul(𝓐 − 𝝀𝑰), and this is a subspace of ℝn 
, 

called the eigenspace.  Any vector that is in an eigenspace is mapped to another vector in that eigenspace 

(scaled by the eigenvalue). 

I. Testing Eigenvalues & Eigenvectors 

1. Consider the matrix    𝐴 =  
3 2
3 8

 .  An eigenvalue of this matrix is λ=2.  Find the associated eigenvectors.   

We need to find the nullspace of (A- λI):    𝐴 − 2𝐼 =  
3 2
3 8

 −  
2 0
0 2

 =  
1 2
3 6

 .  From this, the null space 

will be vectors satisfying x1 + 2x2 = 0.  𝑥 =  
−2
1

  is an eigenvector.  The eigenspace is the 1-dimesional 

subspace of ℝ2
 consisting of all multiples of  

−2
1

 .  We can check that the eigenvector equation is satisfied: 

 
3 2
3 8

  
−2
1

 =  
−4
2

 = 2  
−2
1

    -- Looks good. 

 

So now we know how to test an eigenvalue.  How do we solve for eigenvalues if we don’t already know them?  

The only way to get non-trivial solutions is if the determinant is 0.  This gives us an equation we can solve for 

λ.  A scalar λ is an eigenvalue of an n x n matrix A if and only if λ satisfies the characteristic equation 

𝒅𝒆𝒕 𝓐 − 𝝀𝑰 = 𝟎.  Solving the characteristic equation gives all eigenvalues of the matrix, real and complex. 

 

II. Solving “the Eigenvalue Problem” (Characteristic Equations) 

2. Consider the matrix 𝐴 =  
3 2
3 8

 .  Find all the eigenvalues and their associated eigenspaces.   

First we solve the characteristic equations ro find the eigenvalues. 

 
3 − 𝜆 2

3 8 − 𝜆
 = 0;     3 − 𝜆  8 − 𝜆 − 6 = 0;    𝜆2 − 11𝜆 + 18 = 0;    𝜆 − 2  𝜆 − 9 =  0;    𝜆 = 2, 𝜆 = 9 

For 𝜆 = 2, eigenvector shown above to be 𝑥 =  
−2
1

 .  The eigenspace is 𝑠𝑝𝑎𝑛{ 
−2
1

 } 

For 𝜆 = 9,    𝐴 − 9𝐼 =  
3 2
3 8

 −  
9 0
0 9

 =  
−6 2
3 −1

 ; 3𝑥1 − 𝑥2 = 0;  𝑥 =  
1
3
   The eigenspace is 𝑠𝑝𝑎𝑛{ 

1
3
 } 
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3. Consider the matrix 𝐴 =  
2 2 1
1 3 1
1 2 2

 .  Find all the eigenvalues and their associated eigenspaces.   

First we solve the characteristic equations ro find the eigenvalues. 

det 
2 − 𝜆 2 1

1 3 − 𝜆 1
1 2 2 − 𝜆

 = 0;    2 − 𝜆  
3 − 𝜆 1

2 2 − 𝜆
 −  1  

2 1
2 2 − 𝜆

 +  1  
2 1

3 − 𝜆 1
 = 0 

 

  2 − 𝜆   3 − 𝜆  2 − 𝜆 − 2 −   2  2 − 𝜆 − 2 +  2 −  3 − 𝜆  = 0 

 2 − 𝜆  𝜆2 − 5𝜆 + 4 + 3𝜆 − 3 = 0;  2 − 𝜆  𝜆 − 1)(𝜆 − 4 + 3 𝜆 − 1 = 0  

 𝜆 − 1)(𝜆 − 1  𝜆 − 5 = 0;    𝜆 = 1  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = 2 , 𝜆 = 5  

For 𝜆 = 5,    𝐴 − 5𝐼 =  
2 − 5 2 1

1 3 − 5 1
1 2 2 − 5

 =   
−3 2 1
1 −2 1
1 2 −3

 ~  
1 0 −1
0 1 −1
0 0 0

 ;  𝑥 =  
1
1
1
   

 The eigenspace is 𝑠𝑝𝑎𝑛{ 
1
1
1
 }. 

For 𝜆 = 1,    𝐴 − 𝐼 =  
2 − 1 2 1

1 3 − 1 1
1 2 2 − 1

 =   
1 2 1
1 2 1
1 2 1

 ~  
1 2 1
0 0 0
0 0 0

 ;  𝑥 =  
2

−1
0

 𝑜𝑟 𝑥 =  
1
0

−1
   

 The eigenspace is 𝑠𝑝𝑎𝑛{ 
2

−1
0

 ,  
1
0

−1
 }. 

4. Consider the matrix 𝐴 =  
5 −4 0
1 0 2
0 2 5

 .  Find all the eigenvalues and their associated eigenspaces.   

First we solve the characteristic equations to find the eigenvalues. 

5. det 
5 − 𝜆 −4 0

1 0 − 𝜆 2
0 2 5 − 𝜆

 = 0;    5 − 𝜆  
−𝜆 2
2 5 − 𝜆

 −  1  
−4 0
2 5 − 𝜆

 = 0 

 5 − 𝜆   −𝜆  5 − 𝜆 − 4 −   −4  5 − 𝜆  = 0 

 5 − 𝜆   −𝜆  5 − 𝜆  = 0;   𝜆 = 0  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 1 ;  𝜆 = 5 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 2)  

For 𝜆 = 0,    𝐴 − 0𝐼 =  
5 −4 0
1 0 2
0 2 5

 ~  
1 0 2
0 1 5/2
0 0 0

 ;    
𝑥1 = −2𝑥3

𝑥2 = −5/2𝑥3

𝑥3 = 𝑥3

    𝑥 =  
−4
5
2

    

The eigenspace is 𝑠𝑝𝑎𝑛{ 
−4
5
2

 }. 

For 𝜆 = 5,    𝐴 − 5𝐼 =  
0 −4 0
1 −5 2
0 2 0

 ~  
1 0 2
0 1 0
0 0 0

 ;   
𝑥1 = −2𝑥3

𝑥2 = 0
𝑥3 = 𝑥3

    𝑥 =  
−2
0
1

   

The eigenspace is 𝑠𝑝𝑎𝑛{ 
−2
0
1

 }. 

Note that in this case. The algebraic multiplicity is 2 (# of factors in the char. eqn.) while the geometric 

multiplicity is 1 (dimension of the eigenspace).  These don’t match, so the matrix is not diagonalizable. 
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Worksheet 11 – Diagonalization 

Remember way back in Worksheet 4 how quick arithmetic is with diagonal matrices?  It turns out that if an nxn 

matrix has n independent eigenvectors (i.e. enough to span ℝn
), we will be able to perform a “similarity” 

transformation, to obtain a diagonal matrix that has the eigenvalues of the original matrix on the diagonal.   

Here is the procedure:  Given an n x n matrix A, find all eigenvalues and eigenvectors, then form a matrix with 

the eigenvectors as columns (we will call this matrix P).  Next find the inverse of P.  Now multiply: P
-1

AP=D, 

D is the diagonal matrix.  We can convert back by multiplying: A=PDP
-1

. 

1. Matrix A is given as 𝐴 =  
−4 2
6 7

 .  . Find all eigenvalues and their associated eigenvectors. Show how 

to use these vectors to diagonalize matrix A.  

 

 

 

 

 

 

 

 

 

 

Now that we have the eigenvalues and eigenvectors, we form the matrix that has the e-vectors as columns. Call 

it matrix P. Also find its inverse P
-1

.  (Hint: Use the shortcut for the inverse of a 2x2 matrix). 

 

 

Notice that matrix AP comes out to be just the eigenvectors times the eigenvalues, as expected. 

 

 

We end up with a diagonal matrix that has the eigenvalues on the diagonal (and 0 everywhere else). 
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2. Matrix A is given as 𝐴 =  
2 0 −2
1 3 2
0 0 3

 .  . Find all eigenvalues and their associated eigenvectors. Show 

how to use these vectors to diagonalize matrix A.  
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3. The whole course in 1 Problem - 

The given equation represents an ellipse.  5𝑥2 − 4𝑥𝑦 + 2𝑦2 = 30 

Notice that the axes of the ellipse are rotated from the standard x and y coordinate 

axes.  Through our diagonalization process, we will find a more appropriate 

coordinate system where the new axes, call them x’ and y’, are aligned with the 

ellipse. This will simplify the equation of the ellipse.  First we have to get this 

equation into matrix form, so we can use our linear algebra to rewrite it as: 

5𝑥2 − 4𝑥𝑦 + 2𝑦2 = 30   𝑥   𝑦  
5 −2

−2 2
  

𝑥
𝑦 = 30 

Find eigenvalues and eigenvectors of this matrix to find the n  ew axes that match up ellipse to make an 

alternate basis for ℝ2.
  Also find the rotation angle for the new axes. 

 
5 − 𝜆 −2
−2 2 − 𝜆

 = 0;    5 − 𝜆  2 − 𝜆 − 4 = 0;   𝜆2 − 7𝜆 + 6 = 0    𝜆 − 1  𝜆 − 6 = 0 ;   𝜆 = 1,   𝜆 = 6  

 

 

 

 

 

 


