Name: \qquad Kevin Braza - KEY \qquad Date: \qquad IB Math A\&A SL

Lesson 1 - The Cartesian Plane, Distance \& Midpoint Formula, Equations and Intercepts

1. Consider the points $(3,2)$ and $(9,10)$.
a. Plot the points. Check Desmos
b. Find the distance between the points $(3,2)$ and $(9,10)$.

$$
\begin{aligned}
& \boldsymbol{d}=\sqrt{(9-3)^{2}+(10-2)^{2}} \\
& \boldsymbol{d}=\sqrt{(6)^{2}+(8)^{2}}=\sqrt{\mathbf{3 6}+\mathbf{6 4}}=\sqrt{\mathbf{1 0 0}}=\mathbf{1 0}
\end{aligned}
$$

c. Find the "midpoint" between the points $(3,2)$ and $(9,10)$.

$$
\left(x_{m}, y_{m}\right)=\left(\frac{3+9}{2}, \frac{2+10}{2}\right)=\left(\frac{12}{2}, \frac{12}{2}\right)=(6,6)
$$

d. Confirm that the points are located on the equation:

$$
\begin{aligned}
& y=\frac{4}{3} x-2 \\
& 2=\frac{4}{3}(3)-2 \\
& 10=\frac{4}{3}(9)-2=(4 * 3)-2
\end{aligned}
$$

e. Find the y-intercepts of the equation above.
$y=\frac{4}{3}(0)-2=-2$
x-intercept: $(0,-2)$
f. Find the x-intercepts of the equation above.
$0=\frac{4}{3} x-2 ; \quad x=2 * \frac{3}{4} ; \quad x=\frac{3}{2}$
g. Complete the table below for the equation $y=\frac{4}{3} x-2$.

x	-3	0	3	6	9
y	-6	-2	2	6	10

2. Consider the points $(-2,-3)$ and $(2,5)$.
a. Plot the points. Check Desmos.
b. Find the distance between the points.

$$
\begin{aligned}
& \boldsymbol{d}=\sqrt{(2+2)^{2}+(5+3)^{2}} \\
& \boldsymbol{d}=\sqrt{(4)^{2}+(8)^{2}}=\sqrt{\mathbf{1 6}+\mathbf{6 4}}=\sqrt{\mathbf{8 0}}=\mathbf{4} \sqrt{\mathbf{5}}
\end{aligned}
$$

c. Find the midpoint between the points.

$$
\left(x_{m}, y_{m}\right)=\left(\frac{-2+2}{2}, \frac{-3+5}{2}\right)=\left(\frac{0}{2}, \frac{2}{2}\right)=(0,1)
$$

d. Confirm that the two points lie on the equation:

$$
\begin{aligned}
& y=x^{2}+2 x-3 \\
& -3=(-2)^{2}+2(-2)-3=4-4-3=-3
\end{aligned} \quad 5=(2)^{2}+2(2)-3=4+4-3=59
$$

e. Complete the table below and graph the equation: $y=x^{2}+2 x-3$

x	-4	-3	-2	-1	0	1	2
y	5	0	-3	-4	-3	0	5

Practice: For problems \#3 and \#4, find the y-intercepts and x-intercepts of the following equations:
3. $y=x^{3}-4 x$
$y=(0)^{3}-4(0)=0 \quad 0=x\left(x^{2}-4\right)=x(x-2)(x+2)$
y-intercept: $(0,0) \quad x$-intercepts: $(0,0) ;(2,0) ;(-2,0)$
4. $y^{2}+2 x=16$
$y^{2}+2(0)=16$
$y^{2}=16$
$y= \pm 4$
y-intercepts: $(-4,0) ;(4,0)$
$(0)^{2}+2 x=16$
$2 x=16$
$x=8$
x-intercepts: $(8,0)$
5. Show that these points form the vertices of an isosceles triangle. $(1,-3) ;(3,2) ;(-2,4)$.

$$
\begin{aligned}
& \boldsymbol{d}_{2 \boldsymbol{n d}-\mathbf{1} s t}=\sqrt{(3-1)^{2}+(2+3)^{2}}=\sqrt{(2)^{2}+(5)^{2}}=\sqrt{\mathbf{4 + 2 5}}=\sqrt{\mathbf{2 9}} \\
& \boldsymbol{d}_{\mathbf{3 r d}-\mathbf{2 n d}}=\sqrt{(-2-3)^{2}+(4-2)^{2}}=\sqrt{(-5)^{2}+(2)^{2}}=\sqrt{\mathbf{2 5 + 4}}=\sqrt{\mathbf{2 9}} \\
& \boldsymbol{d}_{3 \boldsymbol{r} \boldsymbol{d}-\mathbf{1} s t}=\sqrt{(-2-1)^{2}+(4+3)^{2}}=\sqrt{(-3)^{2}+(7)^{2}}=\sqrt{\mathbf{9}+\mathbf{4 9}}=\sqrt{\mathbf{5 8}}
\end{aligned}
$$

Only 2 sides are of equal length $=$ isosceles triangle.
6. Consider the coordinates $A(-1,1), B(3,6), C(6,2)$, and $D(2,-3)$. Work with a partner to find the lengths of $\overline{A B}, \overline{B C}, \overline{C D}, \overline{A D}$. What figure is represented by the quadrilateral formed by these four lengths?
$\overline{\boldsymbol{A B}}=\sqrt{(3+1)^{2}+(6-1)^{2}}=\sqrt{(4)^{2}+(5)^{2}}=\sqrt{\mathbf{1 6}+\mathbf{2 5}}=\sqrt{\mathbf{3 1}}$
$\overline{\boldsymbol{B C}}=\sqrt{(6-3)^{2}+(2-6)^{2}}=\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{\mathbf{9 + 1 6}}=\sqrt{\mathbf{2 5}}=\mathbf{5}$
$\overline{\boldsymbol{C D}}=\sqrt{(2-6)^{2}+(-3-2)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}}=\sqrt{\mathbf{1 6}+\mathbf{2 5}}=\sqrt{\mathbf{3 1}}$
$\overline{\boldsymbol{A D}}=\sqrt{(2+1)^{2}+(-3-1)^{2}}=\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{\mathbf{9 + 1 6}}=\sqrt{\mathbf{2 5}}=\mathbf{5}$
Opposite sides are the same length but the angles are not 90 degrees $=$ this is a parallelogram.

