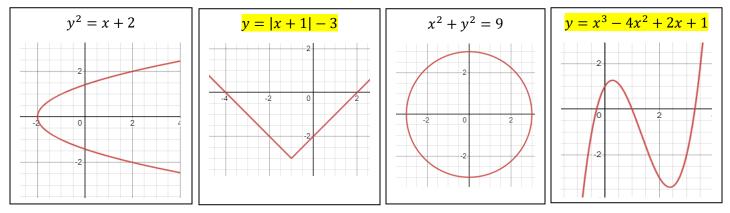
Name: <u>Kevin Braza - KEY</u> Date: IB Math A&A SL

Lesson 1.3 - Definition of a Function, evaluating functions using equations, graphs and charts.

## I. **Identifying Functions**


Recall from your previous math courses, what is your definition of a **function**? How do you test if something is a **function**?

Something with an "input" and "output"

Your Definition: a mapping of the elements of one set called the domain to the elements of a second set called the range.

A function will only have one unique output for a given input. Visually, a mathematical relationship is a function if it passes the vertical line test.

1. Which of the following graphed relationships describe 'y' as a function of 'x'?



## II. Analyzing functions with equations, graphs, and charts

- 2.  $f(t) = t^2 2t$ 
  - a. Evaluate f(3)

Plug a number as input  $f(3) = 3^2 - 2(3)$ f(3) = 9 - 6;f(3) = 3

c. Evaluate f(2x)

Plug an expression as input  $f(2x) = (2x)^2 - 2(2x)$  $f(2x) = 4x^2 - 4x$ 

e. Find all x such that f(x) = 0

b. Find all t such that f(t) = 3

Apply zero product property  $f(t) = t^2 - 2t = 3$  $t^2 - 2t - 3 = 0$ (t-3)(t+1) = 0t = 3; t = -1

d. If 
$$x = 2$$
, find  $f(2x)$ 

$$f(2x) = 4x^{2} - 4x$$
  

$$f(2(2)) = 4(2)^{2} - 4(2)$$
  

$$f(4) = 16 - 8 = 8$$

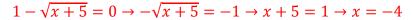
Apply zero product property.  $t^2 - 2t = 0 \rightarrow t(t-2) = 0; \rightarrow t = 0, t = 2$ 

3. 
$$g(t) = 1 - \sqrt{t+5}$$
  
a. Evaluate  $g(-1)$ 

Plug in number as input.  $g(-1) = 1 - \sqrt{-1 + 5}$   $g(-1) = 1 - \sqrt{4}$  g(-1) = -1

b. If 
$$x = -3$$
, find  $g(2x + 5)$ 

If x = -3, 2x + 5 = -1g(-1) = -1


e. Find all x such that g(x) = 0

c. Evaluate g(3x - 1)Plug in expression as input.

 $g(3x - 1) = 1 - \sqrt{(3x - 1) + 5}$  $g(3x - 1) = 1 - \sqrt{3x + 4}$ 

d. Find all x such that g(x) = 4

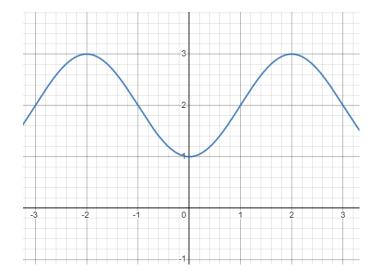
 $g(x) = 1 - \sqrt{x+5} = 4$  $-\sqrt{x+5} = 3$  $\sqrt{x+5} = -3$ No Solution



- 4. h(x) is graphed to the right.
  - a. Find h(1) = 2
  - b. Find h(2) = 3
  - c. Find all x such that h(x) = 1x = 0
  - d. Find h(2x) if x = -1

h(-2) = 3

- 5. Use the charts of f(x) and g(x) to the right.
  - a. Evaluate f(-1) = 1
  - b. Evaluate g(2) = 3
  - c. Evaluate f(3x) if x = -1


f(-3) = 3

d. Find all x such that f(x) = 0

$$x = -2$$

e. Find all x such that g(x + 1) = 1

x + 1 = -2 and x + 1 = 1x = -3 and x = 0



| X  | f(x) | g(x) |
|----|------|------|
| -3 | 3    | 2    |
| -2 | 0    | 1    |
| -1 | 1    | -3   |
| 0  | 2    | 2    |
| 1  | -1   | 1    |
| 2  | 4    | 3    |
| 3  | -2   | -1   |

- 6. Find values for x for which f(x) = g(x) if  $f(x) = x^4 2x^2$  and  $g(x) = 2x^2$ .
- $x^{4} 2x^{2} = 2x^{2}$   $x^{4} - 4x^{2} = 0$   $x^{2}(x^{2} - 4) = 0$   $x^{2}(x^{2} - 4) = 0$  $x^{2}(x^{2} - 4) = 0$

7. Let f(x) be defined as  $f(x) = 6x^2 - 7x$ . Find values of x for which f(x) = 20

 $6x^{2} - 7x = 20 3x(2x - 5) + 4(2x - 5) = 0$   $6x^{2} - 7x - 20 = 0 (3x + 4)(2x - 5) = 0$  $6x^{2} - 15 + 8x - 20 = 0 x = -\frac{4}{3}, x = \frac{5}{2}$ 

8. Let h(x) be defined as  $h(x) = \sqrt{x+1} - 2$ . Find all values of x for which h(x) = x - 3.

| $\sqrt{x+1} - 2 = x - 3$ | $0 = x^2 - 3x$ |
|--------------------------|----------------|
| $\sqrt{x+1} = x - 1$     | 0 = x(x-3)     |
| $x+1 = (x+1)^2$          | x = 0, x = 3   |
| $x + 1 = x^2 - 2x + 1$   |                |