Name: \qquad Kevin Braza - KEY \qquad Date: \qquad IB Math A\&A SL

Lesson 2.2 - Modeling \& Optimization with Quadratic Functions

1. Physics - The path of a diver is given by
$y=-\frac{4}{9} x^{2}+\frac{24}{9} x+12$
Where y is the height (in feet) and x is the horizontal distance from the end of the diving board (in feet). What is the maximum height of the diver?

Axis of Symmetry: $x=\frac{-b}{2 a}=\frac{-\frac{24}{9}}{2\left(\frac{-4}{9}\right)}=\frac{-\frac{24}{9}}{\frac{-8}{9}}=\frac{-24}{-8}=3$

$$
\begin{array}{ll}
y=-\frac{4}{9}(3)^{2}+\frac{24}{9}(3)+12 & y=-4+8+12 \\
y=-\frac{4}{9}(9)+\frac{24}{9}(3)+12 & y=16 \\
y=-4+\frac{24}{3}+12 & \text { Vertex: }(3,16)
\end{array}
$$

2. Economics - A textile manufacturer has daily production costs of $C=100,000-110 x+0.045 x^{2}$ where C is the total cost (in dollars) and x is the number of units produces. How many units should be produced each day to yield a minimum cost?

Axis of Symmetry: $x=\frac{-b}{2 a}=\frac{-110}{2(0.045)}=\frac{-110}{0.09}=1222$ units
3. Finance - The profit P (in hundreds of dollars) that a company makes depends on the amount x (in hundreds of dollars) the company spends on advertising according to the model:
$P=230+20 x-0.5 x^{2}$
a. What expenditure for advertising will yield a maximum profit?

Axis of Symmetry: $x=\frac{-b}{2 a}=\frac{-20}{2(-0.5)}=\frac{-20}{1}=20$ (hundreds of dollars)
b. What is the maximum profit?
$P=230+20(20)-0.5(20)^{2}=430$
4. Sports - A football kicker kicks a football a total distance of 150 feet. The ball reached a maximum height of 80 feet. Write an equation that models the height y to the distance x. (Assume that the motion of a projectile is quadratic).

Vertex $(75,80)$
Other Points: $(0,0) ;(150,0) \quad a=\frac{-80}{5625}=\frac{-16}{1125}$
$y=a(x-h)^{2}+k$
$y=a(x-75)^{2}+80$
$0=a(0-75)^{2}+80$

$$
y=-\frac{-16}{1125}(x-75)^{2}+80
$$

5. Forensics - CSI detectives drop mannequins from a building to help them decide if a victim feel off a building or was pushed off of a building. A mannequin was lightly pushed out of an office 450 feet above ground level and landed 15 feet from base of the building. (Assume that the motion of a projectile is quadratic). Write an equation that models height y to the distance the mannequin travels x.

Vertex $(0,450)$
Other Points: $(15,0)$
$y=a(x-0)^{2}+450$
$0=a(15)^{2}+450$

$$
-450=a(225)
$$

$$
a=\frac{-450}{225}=-2
$$

6. Geometry - The area of the shaded part is $112 \mathrm{~cm}^{2}$. Solve for the value of x .

$(12-x)(11-x)=132-112$
$132-11 x-12 x+x^{2}=132-112$
$112-23 x+x^{2}=0$
$x^{2}-23 x+112=0$
$(x-7)(x-16)=0$
$x=7, x=16$
