Name: \qquad Kevin Braza - KEY \qquad Date: \qquad IB Math A\&A SL

Lesson 3.2 - Simple \& Compound Interest, Appreciation \& Depreciation

I. Comparing Simple \& Compound Interest

Interest that is calculated only on the principal amount is called __simple interest \qquad .

Interest that is calculated on the principal amount and previous earned interest is called \qquad compound interest _ .

1. Fill in the following chart. Compare which type of interest would give the greater balance.

Simple Interest of 6\%				Compound Interest of 6\%			
t	Principal	Annual Interest	Year-End Balance	t	Principal + Prior Interest	Annual Interest	Year-End Balance
1	\$1000.00	\$60.00	\$1060.00	1	\$1000.00	\$60.00	\$1060.00
2	\$1000.00	\$60.00	\$1120.00	2	\$1060.00	\$63.60	\$1123.60
3	\$1000.00	\$60.00	\$1180.00	3	\$1123.60	\$67.42	\$1191.02
4	\$1000.00	\$60.00	\$1240.00	4	\$1191.02	\$71.46	\$1262.48
5	\$1000.00	\$60.00	\$1300.00	5	\$1262.48	\$75.75	\$1338.23
6	\$1000.00	\$60.00	\$1360.00	6	\$1338.23	\$80.29	\$1418.52

Graph the year-end balances for each type of interest and state the mathematical relationship represented.

II. A General Formula for Periodic Compound Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$

$\mathrm{A}=$ the future amount
$\mathrm{P}=$ the present value or principal amount
$\mathrm{r}=$ rate as a decimal
$\mathrm{n}=$ number of compounding periods in a year
$\mathrm{t}=$ the number of years
2. Suppose $\$ 10,000$ is placed into an account that pays interest at a rate of 5%. How much will be earned in the account in the first year if the interest is compounded (a) annually? (b) semi-annually? (c) quarterly?
(a) annually
$A=\$ 10,000\left(1+\frac{0.05}{1}\right)^{(1)(1 \mathrm{yr})}=\$ 10,500$
(b) semi-annually
$A=\$ 10,000\left(1+\frac{0.05}{2}\right)^{(2)(1 y r)}=\$ 10,506.25$
(c) quarterly
$A=\$ 10,000\left(1+\frac{0.05}{4}\right)^{(4)(1 y r)}=\$ 10,509.45$
3. Find the accumulated value of a $\$ 5000$ investment which is invested for 8 years at an interest rate of 12% compounded:
(a) annually
$A=\$ 5,000\left(1+\frac{0.12}{1}\right)^{(1)(8 y r s)}=\$ 12,379.82$
(b) semi-annually
$A=\$ 5,000\left(1+\frac{0.12}{2}\right)^{(2)(8 y r s)}=\$ 12,701.76$
(c) quarterly
$A=\$ 5,000\left(1+\frac{0.12}{4}\right)^{(4)(8 y r s)}=\$ 12,875.41$
(d) monthly
$A=\$ 5,000\left(1+\frac{0.12}{12}\right)^{(12)(8 \mathrm{yrs})}=\$ 12,996.36$
4. Mr. Braza won $\$ 150,000$ in the lottery and decided to invest the money for retirement in 20 years. Find the accumulated value for Mr. Braza's retirement for each of his options:
(a) a certificate of deposit paying 5.4% compounded yearly
$A=\$ 150,000\left(1+\frac{0.054}{1}\right)^{(1)(20 \mathrm{yrs})}=\$ 429,440.97$
(b) a money market certificate paying 5.35% compounded semiannually
$A=\$ 150,000\left(1+\frac{0.0535}{2}\right)^{(2)(20 \mathrm{yrs})}=\$ 431,200.96$
(c) a bank account paying 5.25% compounded quarterly
$A=\$ 150,000\left(1+\frac{0.0525}{4}\right)^{(4)(20 y r s)}=\$ 425,729.59$
(d) a bond issue paying 5.2% compounded daily.
$A=\$ 150,000\left(1+\frac{0.052}{365}\right)^{(365)(20 \mathrm{yrs})}=\$ 424,351.12$

Which is the best option for Mr. Braza's retirement?

