Name: Kevin Braza – KEY _____ Date: _____ IB Math A&A SL

Lesson 3.2 - Simple & Compound Interest, Appreciation & Depreciation

I. Comparing Simple & Compound Interest

Interest that is calculated only on the principal amount is called <u>simple interest</u>.

Interest that is calculated on the principal amount and previous earned interest is called <u>compound interest</u>.

1. Fill in the following chart. Compare which type of interest would give the greater balance.

Simple Interest of 6%				Compound Interest of 6%			
t	Principal	Annual	Year-End	t	Principal +	Annual	Year-End
		Interest	Balance		Prior Interest	Interest	Balance
1	\$1000.00	\$60.00	\$1060.00	1	\$1000.00	\$60.00	\$1060.00
2	\$1000.00	\$60.00	\$1120.00	2	\$1060.00	\$63.60	\$1123.60
3	\$1000.00	\$60.00	\$1180.00	3	\$1123.60	\$67.42	\$1191.02
4	\$1000.00	\$60.00	\$1240.00	4	\$1191.02	\$71.46	\$1262.48
5	\$1000.00	\$60.00	\$1300.00	5	\$1262.48	\$75.75	\$1338.23
6	\$1000.00	\$60.00	\$1360.00	6	\$1338.23	\$80.29	\$1418.52

Graph the year-end balances for each type of interest and state the mathematical relationship represented.

II. A General Formula for Periodic Compound Interest: $A = P(1 + \frac{r}{n})^{nt}$

- A =the future amount
- P = the present value or principal amount

r = rate as a decimal

n = number of compounding periods in a year

t = the number of years

2. Suppose \$10,000 is placed into an account that pays interest at a rate of 5%. How much will be earned in the account in the first year if the interest is compounded (a) annually? (b) semi-annually? (c) quarterly?

(a) annually

$$A = \$10,000(1 + \frac{0.05}{1})^{(1)(1\ yr)} = \$10,500$$

(b) semi-annually

$$A = \$10,000(1 + \frac{0.05}{2})^{(2)(1 \text{ yr})} = \$10,506.25$$

(c) quarterly

$$A = \$10,000(1 + \frac{0.05}{4})^{(4)(1 \text{ yr})} = \$10,509.45$$

3. Find the accumulated value of a \$5000 investment which is invested for 8 years at an interest rate of 12% compounded:

(a) annually

$$A = \$5,000(1 + \frac{0.12}{1})^{(1)(8 \text{ yrs})} = \$12,379.82$$

(b) semi-annually

$$A = \$5,000(1 + \frac{0.12}{2})^{(2)(8 \text{ yrs})} = \$12,701.76$$

(c) quarterly

$$A = \$5,000(1 + \frac{0.12}{4})^{(4)(8 \text{ yrs})} = \$12,875.41$$

(d) monthly

$$A = \$5,000(1 + \frac{0.12}{12})^{(12)(8 \text{ yrs})} = \$12,996.36$$

4. Mr. Braza won \$150,000 in the lottery and decided to invest the money for retirement in 20 years. Find the accumulated value for Mr. Braza's retirement for each of his options:

(a) a certificate of deposit paying 5.4% compounded yearly

$$A = \$150,000(1 + \frac{0.054}{1})^{(1)(20 \text{ yrs})} = \$429,440.97$$

(b) a money market certificate paying 5.35% compounded semiannually

$$A = \$150,000(1 + \frac{0.0535}{2})^{(2)(20 \text{ yrs})} = \$431,200.96$$

(c) a bank account paying 5.25% compounded quarterly

$$A = \$150,000(1 + \frac{0.0525}{4})^{(4)(20 \text{ yrs})} = \$425,729.59$$

(d) a bond issue paying 5.2% compounded daily.

$$A = \$150,000(1 + \frac{0.052}{365})^{(365)(20 \text{ yrs})} = \$424,351.12$$

Which is the best option for Mr. Braza's retirement?