$\qquad$ Kevin Braza - KEY $\qquad$ Date: $\qquad$ IB Math A\&A SL

Lesson 8.1 - A More Formal Intro to Vectors
I. Using your Trigonometry: An airplane in calm conditions is flying at $800 \mathrm{~km} / \mathrm{hr}$ due east. A cold wind suddenly blows from the south at $35 \mathrm{~km} / \mathrm{hr}$ pushing the airplane slightly off course. Draw a picture of the scenario, and using trigonometry, find the resulting speed and direction on the plane

$35 \mathrm{~km} / \mathrm{hr}$

Angle $=0.044 \mathrm{rad}$ or 2.5 degrees

What are vectors?
A vector is a quantity that has both a magnitude and a direction. Quantities that only have a magnitude are called scalars.

## II. Representing Vectors in the Coordinate Plane

1. Write each of the following vectors in unit vector form.
a. $\binom{3}{4}=3 i+4 j$
b. $\binom{2}{0}=2 \boldsymbol{i}+0 \boldsymbol{j}$
c. $\binom{2}{-5}=2 \boldsymbol{i}-5 \boldsymbol{j}$
d. $\binom{-1}{-3}=-i-3 j$
2. Find the unknowns if
a. $\binom{a+1}{2 b-8}=\binom{9-a}{a}$
$\begin{array}{lll}a+1=9-a & 2 a=8 & a=4 \\ 2 b-8=4 & 2 b=12 & b=6\end{array}$
b. $\quad\binom{2 x+3 y}{x-2}=\binom{11}{2 y}$

Rewriting in terms of unit vectors:
Let $\boldsymbol{i}=\binom{\mathbf{1}}{\mathbf{0}}$ and $\boldsymbol{j}=\binom{\mathbf{0}}{\mathbf{1}}$

$$
\begin{aligned}
& \binom{x}{y}=x \boldsymbol{i}+y \boldsymbol{j} \\
& \binom{2}{5}=2 \boldsymbol{i}+5 \boldsymbol{j}
\end{aligned}
$$

$2 x+3 y=11$
$2 x+3 y=11$

$$
x-2=2 y
$$

$$
x-2 y=2
$$

Add equations:

$$
\begin{aligned}
& 2 x+3 y=11 \\
& -2 x+4 y=-4 \\
& 7 y=7 \quad y=1 \\
& \quad x=4
\end{aligned}
$$

## III. The Magnitude \& Direction of a Vector

3. Given the following information, find the component form \& unit vector form of each vector, as well as the magnitude and direction angle for each vector.
a. $\overrightarrow{R S}$ where $R=(7,2) ; S=(-1,-10)$

Component Form: $\binom{-8}{-12} \quad$ Unit Vector Form: $\mathbf{- 8 i} \mathbf{- 1 2 \boldsymbol { j }}$
Magnitude: $|\overrightarrow{R S}|=\sqrt{(-8)^{2}+(-12)^{2}}=4 \sqrt{13} \approx 14.422$ $\arctan \left(\frac{-12}{-8}\right)=56.31^{\circ}$, Angle in $3^{\text {rd }}$ Quadrant $=180+56.31^{\circ}$ Direction: $236.31^{\circ}$
b. $\overrightarrow{P Q}$ where $P=(-4,-10) ; Q=(-5,-2)$

Component Form: $\binom{-1}{12} \quad$ Unit Vector Form: $\boldsymbol{i}+12 \boldsymbol{j}$
Magnitude: $|\overrightarrow{P Q}|=\sqrt{(-1)^{2}+(12)^{2}}=\sqrt{145} \approx 12.042$ $\arctan \left(\frac{12}{1}\right)=85.23^{\circ}$ Angle in $2^{\text {nd }}$ Quadrant $=180-85.24^{\circ}$

Direction: $94.77^{\circ}$
c. $\overrightarrow{R S}$ where $R=(10,7) ; S=(-5,-3)$

Component Form: $\binom{-15}{-10} \quad$ Unit Vector Form: $\mathbf{- 1 5 i} \boldsymbol{i} \mathbf{1 0} \boldsymbol{j}$
Magnitude: $|\overrightarrow{R S}|=\sqrt{(-15)^{2}+(-10)^{2}}=5 \sqrt{13} \approx 18.028$ $\arctan \left(\frac{-10}{-15}\right)=33.69^{\circ}$, Angle in $3^{\text {rd }}$ Quadrant $=180+33.69^{\circ}$ Direction: $213.69^{\circ}$
d. $\overrightarrow{R S}$ where $R=(-6,-4) ; S=(-8,-7)$

Component Form: $\binom{-2}{-3} \quad$ Unit Vector Form: $\mathbf{-} \mathbf{i} \boldsymbol{i}-3 \boldsymbol{j}$
Magnitude: $|\overrightarrow{R S}|=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13} \approx 3.606$ $\arctan \left(\frac{-3}{-2}\right)=56.31^{\circ}$, Angle in $3^{\text {rd }}$ Quadrant $=180+56.31^{\circ}$ Direction: $236.31^{\circ}$

Consider our previous vector: $\left(\frac{2}{5}\right)$
Which can be written in base unit vector form as $2 \boldsymbol{i}+5 \boldsymbol{j}$.

The length or magnitude of the vector is the distance of the vector from the standard position in the origin (This is just the Pythagorean Theorem).
$\xrightarrow[\mathbf{2 i}]{\sqrt{29}}{ }^{\mathbf{4} \mathbf{j}}|\boldsymbol{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$

The direction of a vector is the measure of the angle it makes with a horizontal line. Using trigonometry,

$$
\tan \theta=\frac{y}{x}
$$

4. Given the magnitude and direction, find the horizontal and vertical components for the following vectors.
a. $|\boldsymbol{a}|, \boldsymbol{\theta}=45,298^{\circ}$
$x=45 \cos 298^{\circ}=21.13$
$y=45 \sin 298^{\circ}=-39.73$
b. $|\boldsymbol{m}|, \boldsymbol{\theta}=17,41^{\circ}$
$x=17 \cos 41^{\circ}=-15.17$
$y=17 \sin 41^{\circ}=-11.43$
c. $|\boldsymbol{a}|, \boldsymbol{\theta}=11,99^{\circ}$
$x=11 \cos 99^{\circ}=-1.72$
$y=11 \sin 99^{\circ}=10.86$
d. $|\boldsymbol{t}|, \boldsymbol{\theta}=17,41^{\circ}$
$x=17 \cos 41^{\circ}=12.83$
$y=17 \sin 41^{\circ}=11.15$
