Lesson 2.2 - Modeling \& Optimization with Quadratic Functions

1. Physics - The path of a diver is given by
$y=-\frac{4}{9} x^{2}+\frac{24}{9} x+12$
Where y is the height (in feet) and x is the horizontal distance from the end of the diving board (in feet). What is the maximum height of the diver?
2. Economics - A textile manufacturer has daily production costs of $C=100,000-110 x+0.045 x^{2}$ where C is the total cost (in dollars) and x is the number of units produces. How many units should be produced each day to yield a minimum cost?
3. Finance - The profit P (in hundreds of dollars) that a company makes depends on the amount x (in hundreds of dollars) the company spends on advertising according to the model:
$P=230+20 x-0.5 x^{2}$
a. What expenditure for advertising will yield a maximum profit?
b. What is the maximum profit?
4. Sports - A football kicker kicks a football a total distance of 150 feet. The ball reached a maximum height of 80 feet. Write an equation that models the height y to the distance x. (Assume that the motion of a projectile is quadratic).
5. Forensics - CSI detectives drop mannequins from a building to help them decide if a victim feel off a building or was pushed off of a building. A mannequin was lightly pushed out of an office 450 feet above ground level and landed 15 feet from base of the building. (Assume that the motion of a projectile is quadratic). Write an equation that models height y to the distance the mannequin travels x.
6. Geometry - The area of the shaded part is $112 \mathrm{~cm}^{2}$. Solve for the value of x .

