Lesson 4.0 - Intro to Number Sequences

I. What is a sequence?

Consider the values of the first 5 terms of 3 sequences:
A. $30,40,50,60,70, \ldots$
B. $0,5,15,30,50, \ldots$
C. $1,2,4,8,16, \ldots$

1. For each sequence, describe a way to produce a new term from the previous term.
2. If the patterns described continue, which sequence has the greatest value for the $10^{\text {th }}$ term?

II. Practice with Sequences

Work with a partner and try to guess the next three terms in each sequence.

1. $1,-3,9,-27,81, \ldots$
2. $9,109,209,309,409, \ldots$
3. $0,3,8,15,24, \ldots$
4. $\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{1}{4}, \frac{5}{32}, \ldots$
5. $4,16,36,64,100$

Work with a partner and find the tenth term in each sequence.
6. $7,9,12,16,21, \ldots$
7. $-4,12,-36,108,-324, \ldots$
8. $-1, \frac{2}{3}, \frac{7}{3}, 4, \frac{17}{3}$

III. Sequences as Functions

Find the first four terms in each sequence.
9. $a(n)=n^{2}+1$
10. $a_{n}=\frac{2 n+1}{n^{3}}$
13. $u(n)=3^{n-1}$
14. $u_{n}=\frac{n^{3}}{2 n+1}$

Find the tenth term in each sequence.
11. $a_{n}=\frac{2 n+1}{n^{3}}$
12. $u(n)=(2 n)^{2}$
15. $a(n)=4^{n-1}$
16. $u_{n}=(2 n-1)^{2}$

Write an explicit function/formula to model each sequence.
17. $-12,-9,-6,-3,0, \ldots$
18. $-6,-3,-2,-3 / 2,-6 / 5, \ldots$

IV. Recursively-defined Sequences

Find the first four terms in each sequence.
19. $a_{n}=a_{n-1}+10, a_{1}=29$
20. $u_{n}=u_{n-1} \cdot 2$
21. $u(n)=u(n-1)+n$
22. $a(n)=\frac{2+a_{n-1}}{2}$

Write a recursive formula for each sequence.
23. $2,4,7,11,16, \ldots$
24. $15,215,415,615,815, \ldots$

