Name: \qquad KKevin Braza - KEY \qquad Date: \qquad Math 9/10 Honors

Lesson 0.4 - Sets and Venn Diagrams (Math 9/10 Book pages 28-46)

I. Theory of Knowledge, Motivating Number Sets

A set is any collection of numbers or objects, and each number or object in a set is called an element or a member of the set. Any defined object exists either in or out of the set.

Often times a capital letter is used to represent a set, and curly braces are used to denote the elements: $\}$
For example:

- If V is the set of all vowels, then $V=\{$ vowels $\}=\{a, e, i, o, u\}$
- If E is the set of all even numbers, then $E=\{$ even numbers $\}=\{2,4,6,8,10,12, \ldots\}$

We use the symbol \in to mean an element is a set of and \notin to mean is not an element of.
So for the set $E=\{2,4,6,8,10,12, \ldots\}$, we can say $6 \in E$ but $11 \notin E$.

The number of elements in a set S is written as $n(S)$. A set which contains a finite number of elements is called a finite set, and a set which contains an infinite number of elements is called an infinite set.

For example:

- The set of vowels V has 5 elements, V is a finite set, and $n(V)=5$.
- The set of even numbers E is an infinite set.

The set $\}$ or \oslash is called the empty set or null set, and contains no elements.

1. Write the following statements using set notation:
a. 8 is an element of set P.
$8 \in P$
b. k is not an element of set S. $k \notin S$
c. 14 is not an element of the set of all odd numbers. $14 \notin$ odd
d. There are 9 elements in set Y.
2. For each of the following sets, list the elements of the set, determine

Special Number Sets **to remember**

$\mathbb{N}=\{0,1,2,3,4,5,6,7 \ldots\}$ is called the set of all natural numbers.
$\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots\}$ is the set of all integers.
$\mathbb{Z}^{+}=\{+1,+2,+3,+4, \ldots\}$ is the set of all positive integers.
\mathbb{Q} is the set of all rational
numbers, or numbers which can be written in the form $\frac{p}{q}$ where p and q are integers, $q \neq 0$.
\mathbb{R} is the set of all real numbers, all numbers which can be placed on a number line including $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, etc. whether the set if finite or infinite, and if the set is finite, find the number of elements in the set.
a. $A=\{$ factors of 6$\}$
$\{1,2,3,6\}$ finite, $n(A)=4$
b. $B=\{$ multiples of 6$\}$
$\{6,12,18,24 \ldots\}$, infinite
c. $C=\{$ factors of 17$\}$
d. $D=\{$ multiples of 17$\}$
e. $E=\{$ prime numbers less than 20$\}$
f. $F=\{$ composite numbers between 10 and 30$\}$
$\{1,17\}$, finite, $n(C)=2$
$\{17,34,51,68, \ldots\}$, infinite
$\{2,3,5,7,11,13,17,19\}$, finite, $n(E)=8$
$\{12,14,15,16,18,20,21,22,24,25,26,27,28\}$ finite, $n(F)=13$
3. Let M_{3} be the set of all multiples of 3 , and F_{60} be the set of factors of 60 .
a. List the first 8 elements of M_{3} in set notation.
$\{3,6,9,12,15,18,21,24\}$
b. List the elements of F_{60} in set notation.
$\{1,2,3,4,5,6,10,12,15,20,30,60\}$
c. What elements are both in M_{3} and F_{60} ?

II. Interval Notation

The notation $\{x \mid \ldots\}$ is used to describe "the set of all x such that".
4. Describe the following number lines or statements using interval set builder notation.
(a)

(b)

$$
\{x \mid-5<x<5, x \in \mathbb{Z}\}
$$

(c)

$$
\{x \mid x>3\}
$$

(d)

$$
\{x \mid x \leq-1, x \geq 2\}
$$

(e) The set of all real numbers greater than 7.
(f) The set of all integers between -8 and 15 .
(g) The set of all rational numbers between 4 and 6 , including 4 .

$$
\begin{aligned}
& \{x \mid x>7\} \\
& \{x \mid-8<x<15\} \\
& \{x \mid 4 \leq x<6\}
\end{aligned}
$$

III. Subsets, Complements \& Venn Diagrams

5. Suppose $A=\{1,2,3,4,5,6,7\}, B=\{2,3,5\}$, and $C=$ $\{3,5,8\}$. Decide whether B or C are subsets of A.
Every element of B is in A, but not every element of C is in A , so $B \subseteq A$ but not C .
6. Suppose $U=\{x \mid x \leq 12, x \in \mathbb{Z}\}$. Find the complement (a) $A=\{$ even numbers in $U\}$
$A^{\prime}=\{$ odd numbers in $U\}$
$=\{1,3,5,7,9,11\}$
(b) $B=\{$ prime numbers in $U\}$
$B^{\prime}=\{1,3,5,7,9,11\}$

Subsets and Complements

Suppose A and B are two sets. A is a subset of B if every element of A is also an element of B. We write $A \subseteq B$ to denote a subset relationship between A and B.

The universal set U is the set of all elements under consideration. The complement of A, called A^{\prime}, is the set of all elements in U which are not in A.

$$
A^{\prime}=\{x \mid x \notin A, \in U\}
$$

7. Consider the set $S=\{2,4,6,7\}$ within the universal set $\left\{x \mid x \leq 10, x \in \mathbb{Z}^{+}\right\}$.
(a) Draw a Venn diagram to show S.
(b) List the elements of the complement set S^{\prime}
(c) Find $n(S), n\left(S^{\prime}\right), n(U)$.

If A and B are two sets, then:

- $A \cap B$ is the intersection of A and B, and consists of all elements which are in both A and B.
- $A \cup B$ is the union of A and B, and consists of all elements which are in A or B (or both).

8. Consider $U=\{x \mid 0 \leq x \leq 12, x \in \mathbb{Z}\}, A=\{2,3,5,7,11\}$, and $B=\{1,3,6,7,8\}$. Illustrate A and B on a Venn diagram. State the sets $A \cap B$ and $A \cup B$.

> 3 and 7 are in both A and B, so the circles representing A and B must overlap.
> We place 3 and 7 in the overlap, then fill in the rest of A and the rest of B.
> The remaining elements of U are placed outside the two circles.
9. Suppose $U=\{$ positive integers $\leq 12\}, A=\{$ primes $\leq 12\}$, and $B=\{$ factors of 12$\}$.
(a) List the elements of the sets A and B.
(b) Show the sets A, B, and U on a Venn diagram.
(c) List the elements in:
i. A^{\prime}
ii. $A \cap B$
iii. $A \cup B$
(d) Find:
i. $n(A \cap B)$
ii. $n(A \cup B)$
iii. $n\left(B^{\prime}\right)$
a $A=\{2,3,5,7,11\}$ and $B=\{1,2,3,4,6,12\}$
b

Two sets are disjoint or mutually exclusive if they have no elements in common.

If A and B are disjoint then $A \cap B=\varnothing$
c i $A^{\prime}=\{1,4,6,8,9,10,12\}$

$$
\text { ii } A \cap B=\{2,3\}
$$

iii $A \cup B=\{1,2,3,4,5,6,7,11,12\}$
d i $n(A \cap B)=2$

$$
\text { ii } n(A \cup B)=9
$$

iii $B^{\prime}=\{5,7,8,9,10,11\}$, so $n\left(B^{\prime}\right)=6$
10. Draw a Venn diagram for Problem \#3. Find: $n\left(M_{3} \cap F_{60}\right), n\left(M_{3} \cup F_{60}\right)$, and $n\left(F_{60}{ }^{\prime}\right)$

IV. Problem Solving with Venn Diagrams

11. In the Venn diagram given, (5) means that there are 5 elements in the set $A \cap B$.
How many elements are there in:
(a) A
(b) B^{\prime}
$n(A)=17$
(c) $A \cup B$
$n\left(B^{\prime}\right)=18$
(d) A, but not B. $\quad n(A$, but not $B)=12$
(e) B, but not A. $\quad n(B$, but not $A)=8$
(f) Neither A nor B ? $n($ Neither A nor $B)=6$

12. Given $n(U)=25, n(P)=10, n(Q)=12$, and $n(P \cap Q)=3$, find $n(P \cup Q)$ and $n(P$, but not $Q)$.

a $n(P \cup Q)=a+b+c=19$

We see that $b=3 \quad\{$ as $n(P \cap Q)=3\}$

$$
\begin{gathered}
a+b=10 \quad\{\text { as } n(P)=10\} \\
b+c=12 \quad\{\text { as } n(Q)=12\} \\
a+b+c+d=25 \quad\{\text { as } n(U)=25\} \\
\therefore \quad b=3, a=7, \text { and } c=9 \\
\therefore \quad 7+3+9+d=25 \\
\therefore d=6
\end{gathered}
$$

b $n(P$, but not $Q)=a=7$
13. The Venn diagram alongside illustrates the number of people in a sporting in sporting club who play tennis (T) and hockey (H).
Determine the number of people:
(a) in the club 75
(b) who play hockey 53
(c) who play both sports 27
(d) who play neither sport 7
(e) who play at least one sport 68

