Name: \qquad Date: \qquad
Lesson 1.5 - Imaginary \& Complex Numbers

I. Theory of Knowledge, Motivating Complex Numbers

The very first topic you learned in mathematics was probably counting. The set of counting numbers $\{1,2,3,4 \ldots\}$ are called the natural numbers \mathbb{N}, and are represented with the number line.

At a certain point around $4^{\text {th }}$ grade, we introduced negative numbers. Negative numbers give you a solution to equations like $x+2=1$. From a physical standpoint, we can model situations like debt and reversal of direction using negative numbers. This can be visually represented as a reflection across the number line, and the set of all these numbers is called the real numbers \mathbb{R}.

Here we will introduce the concept of imaginary numbers, which will transform our number line once more by introducing rotations. Let \boldsymbol{i} be defined as some number whose square is $\mathbf{- 1}$. Imaginary numbers give you a solution to equations like $x^{2}=-1$.

A complex number $\boldsymbol{a}+$ bi has both a real number part \boldsymbol{a} and an imaginary part bi. We will discuss the practical applications of complex numbers much later, but for now just recognize that they might appear as solutions to some quadratic equations. A complex double-number line like the one drawn above is called an Argand diagram or more commonly a complex coordinate plane.

Let \boldsymbol{i} be defined as some number whose square is -1 .

Given $\quad \boldsymbol{i}=\boldsymbol{i}$
and $\quad \boldsymbol{i}^{2}=\mathbf{- 1}$

Calculate the following:

$$
\begin{aligned}
& i^{3}= \\
& i^{4}= \\
& i^{5}= \\
& i^{6}= \\
& i^{59}= \\
& i^{0}= \\
& i^{-1}= \\
& i^{-2}= \\
& i^{-3}= \\
& i^{-89}=
\end{aligned}
$$

1. Enter the complex coordinates of the following points on the Argand diagram.

A:
B
C:

2. Evaluate the expression $(9+4 i)+(7+6 i)$ and write the result in the form $a+b i$.
3. Evaluate the expression $(-5+6 i)+(-4+6 i)$ and write the result in the form $a+b i$.
4. Evaluate the expression $(-6-4 i)-(-8-4 i)$ and write the result in the form $a+b i$.
5. Evaluate the expression $(-6+2 i)-(6+7 i)$ and write the result in the form $a+b i$.
6. Evaluate the expression $(9-7 i)(-8-5 i)$ and write the result in the form $a+b i$.
7. Evaluate the expression $(3+i)(5+5 i)(-3+3 i)$ and write the result in the form $a+b i$.
8. Evaluate the expression $\left((-4-4 i)^{2}-3\right) i$ and write the result in the form $a+b i$.
9. Evaluate the expression $(a+b i)(a-b i)$ and write the result in the form $a+b i$.
10. Evaluate the expression $(a+b i)^{2}-(a-b i)^{2}$ and write the result in the form $a+b i$.
11. Evaluate the expression $(a+b i)^{3}$ and write the result in the form $a+b i$.

II. Complex Conjugates \& Dividing Complex Numbers

12. If $z=4-6 i$ then find the values of z^{*} and $|z|$.
13. Evaluate the expression $\frac{4-6 i}{2-5 i}$ and write the result in the form $a+b i$.

The complex conjugate of a complex number is defined as the number with an equal real part but opposite magnitude imaginary part.

For any complex number $z=a+b i$ Its conjugate is

The magnitude of a complex number is its distance from the origin, which from the Pythagorean theorem is

Note that
14. Evaluate the expression $\frac{8-7 i}{-8-6 i}$ and write the result in the form $a+b i$.

III. Practice on Your Own

15. Evaluate the expression $(i)^{2}(-5+i)^{2}$ and write the result in the form $a+b i$.
16. Evaluate the expression $\frac{4-8 i}{6-5 i}$ and write the result in the form $a+b i$.
17. Evaluate the expression $\frac{-1+3 i}{-4-8 i}$ and write the result in the form $a+b i$.
18. Evaluate the expression $\frac{-4+4 i}{4-6 i}$ and write the result in the form $a+b i$.
19. Evaluate the expression $\frac{-6-i}{1+5 i}$ and write the result in the form $a+b i$.
20. Evaluate the expression $\frac{-4+3 i}{-10+7 i}$ and write the result in the form $a+b i$.
