Name	e:								D	ate:	N	Aath 9/10 Honors
Lesso	on 1.5 –	Imagin	nary & (Comple	ex Numb	ers						
I. Theory of Knowledge, Motivating Complex Numbers The very first topic you learned in mathematics was probably counting. The set of counting numbers {1,2,3,4 } are called the natural numbers ℕ, and are											Let <i>i</i> be defined as some number whose square is -1.	
represented with the number line.									Given	i = i		
	1	2	3	4	5	6	7	8	9	10	and	$i^{2} = -1$
numb stand negat numb	eers giv point, v tive num er line,	e you a we can nbers. and th	solution model s This ca e set of	n to equ ituation n be vis all thes	e, we intr lations li is like de sually re se numbe -1	ike x - ebt and presen rs is c	+ 2 = 1. $d reverse$ $nted as a$ $valled the$	From al of dir a reflect e real n	a physic ection u ion acro u mbers	cal sing oss the R.	Calculate $i^3 =$ $i^4 =$ $i^5 =$ $i^6 =$	the following:
Here we will introduce the concept of imaginary numbers , which will transform our number line once more by introducing rotations. Let i be defined as some number whose square is -1 . Imaginary numbers give you a solution to equations like $x^2 = -1$.									$i^{59} =$ $i^{0} =$ $i^{-1} =$ $i^{-2} =$ $i^{-3} =$			
-5	-4	-3	-2	-1	0	1	2	3	4	5	. 00	

A complex number a + bi has both a real number part a and an imaginary part **bi**. We will discuss the practical applications of complex numbers much later, but for now just recognize that they might appear as solutions to some quadratic equations. A complex double-number line like the one drawn above is called an Argand diagram or more commonly a complex coordinate plane.

-i

__ -2i __ -3i

 $i^{-89} =$

- 1. Enter the complex coordinates of the following points on the Argand diagram.
 - A: B
 - C:

- 2. Evaluate the expression (9 + 4i) + (7 + 6i) and write the result in the form a + bi.
- 3. Evaluate the expression (-5 + 6i) + (-4 + 6i) and write the result in the form a + bi.
- 4. Evaluate the expression (-6 4i) (-8 4i) and write the result in the form a + bi.
- 5. Evaluate the expression (-6 + 2i) (6 + 7i) and write the result in the form a + bi.
- 6. Evaluate the expression (9 7i)(-8 5i) and write the result in the form a + bi.
- 7. Evaluate the expression (3 + i)(5 + 5i)(-3 + 3i) and write the result in the form a + bi.

8. Evaluate the expression $((-4 - 4i)^2 - 3)i$ and write the result in the form a + bi.

- 9. Evaluate the expression (a + bi)(a bi) and write the result in the form a + bi.
- 10. Evaluate the expression $(a + bi)^2 (a bi)^2$ and write the result in the form a + bi.

11. Evaluate the expression $(a + bi)^3$ and write the result in the form a + bi.

II. Complex Conjugates & Dividing Complex Numbers 12. If $z = 4 - 6i$ then find the values of z^* and $ z $.	The complex conjugate of a complex number is defined as the number with an equal real part but opposite magnitude imaginary part.		
	For any complex number $z = a + bi$		
13. Evaluate the expression $\frac{4-6i}{2-5i}$ and write the result in the form	Its conjugate is		
a + bi.	The magnitude of a complex number is its distance from the origin, which from the Pythagorean theorem is		
	Note that		

14. Evaluate the expression $\frac{8-7i}{-8-6i}$ and write the result in the form a + bi.

III. Practice on Your Own

15. Evaluate the expression $(i)^2(-5+i)^2$ and write the result in the form a + bi.

16. Evaluate the expression $\frac{4-8i}{6-5i}$ and write the result in the form a + bi.

17. Evaluate the expression $\frac{-1+3i}{-4-8i}$ and write the result in the form a + bi.

18. Evaluate the expression $\frac{-4+4i}{4-6i}$ and write the result in the form a + bi.

19. Evaluate the expression $\frac{-6-i}{1+5i}$ and write the result in the form a + bi.

20. Evaluate the expression $\frac{-4+3i}{-10+7i}$ and write the result in the form a + bi.