\qquad Kevin Braza - KEY Date: \qquad Math 9/10 Honors

Lesson 1.7 - Radical Equations \& Linear Inequalities (Pages 432-455 in Math 9/10 Textbook)

I. Solve Radical Equations

1. Solve for the only possible solution. Check if your solution is valid or extraneous.
$\sqrt{3 x+9}=6$

$$
\begin{aligned}
& \text { Test: } x=9 \\
& \sqrt{3(9)+9}=6 \\
& \sqrt{36}=6
\end{aligned}
$$

$3 x+9=36$
$3 x=27$
$x=9$

How to Solve Radical Equations

2. Solve for the only possible solution. Check if your solution is valid or extraneous.
$\sqrt{-5 x-1}=\sqrt{8 x+5}$

$$
\text { Test: } x=-6 / 13
$$

$-5 x-1=8 x+5$
$-13 x=6$
$x=-6 / 13$

$$
\begin{aligned}
& \sqrt{-5\left(-\frac{6}{13}\right)-1}=\sqrt{8\left(-\frac{6}{13}\right)+5} \\
& \sqrt{\left(\frac{30}{13}\right)-\frac{13}{13}}=\sqrt{\left(-\frac{48}{13}\right)+\frac{65}{13}}=\frac{17}{13}
\end{aligned}
$$

3. Solve for the only possible solution. Check if your solution is valid or extraneous. $\sqrt{10-x}+x=-2$
$10-x=(-x-2)^{2}$
$10-x=x^{2}+4 x+4$
$x^{2}+5 x-6=0$
$(x+6)(x-1)=0$

Test $x=-6$
$\sqrt{10+6}-6=-2$
Test $x=1$
$\sqrt{10-1}+1=-2$
$x=-6, x=1$
4. Solve the following equation: Check if your solution is valid or extraneous.
$x+\sqrt{2 x+1}=7$
$\sqrt{2 x+1}=7-x$
$2 x+1=(7-x)^{2}$
Test: $x=12$
$2 x+1=49-14 x+x^{2}$
$0=48-16 x+x^{2}$
$0=(x-12)(x-4)$
$\sqrt{2(12)+1}=7-(12)$
$x=12, x=4$
Test: $x=4$
$\sqrt{2(4)+1}=7-(4)$
5. Solve the following equation. Check if your solution is valid or extraneous.
$x-3 \sqrt{x}-10=0$
$(\sqrt{x}-5)(\sqrt{x}+2)=0$
$\sqrt{x}=5, \quad, x=25 \quad \sqrt{x}=-2$
6. Solve the following equation. Check if your solution is valid or extraneous.
$\sqrt{11-x^{2}}-\frac{2}{\sqrt{11-x^{2}}}=1$
$u-\frac{2}{u}=1$
$u^{2}-2=u$
$u^{2}-u-2=0$
$(u-2)(u+1)=0$
$u=2, u=-1$
$\sqrt{11-x^{2}}=2, \sqrt{11-x^{2}}=-1$
$11-x^{2}=4$
$x^{2}=7$
$x= \pm \sqrt{7}$
7. Solve the following equation. Check if your solution is valid or extraneous.
$(x-1)^{-\frac{1}{2}}(x-8)+(x-1)^{\frac{1}{2}}=0$
$\frac{(x-8)}{1}+(x-1)^{\frac{1}{2}}=0$
$(x-1)^{\frac{1}{2}}$
$(x-8)+(x-1)^{1}=0$
$2 x-9=0$
$x=9 / 2$

II. Linear Inequalities

8. Solve the following inequality.
$3 x+10 \leq 6 x+12$
$-3 x \leq 2$
$x \geq-\frac{2}{3}$
9. Solve the following inequality.
$-2(n-7)>17$
$n-7<\frac{-17}{2}$
$n<\frac{14}{2}+\frac{17}{2}$
$n<\frac{33}{2}$

Rules for Solving Linear Inequalities

Linear inequalities work just like linear equations but with < or > instead of an $=$.

If we add or subtract the same number to both sides, the inequality is maintained.
If $5>3$, then $5+2>3+2$
If we multiply or divide by a positive number to both sides, the inequality is maintained. If $5>3$, then $5 \times 2>3 \times 2$

If we multiply or divide by a positive number to both sides, the inequality is maintained. If $5>3$, then $5 \times-2<3 \times-2$
10. Solve for x and graph the solution.

$$
\begin{aligned}
& 3 x-4 \leq 2 \\
& 3 x \leq 6 \\
& x \leq 2
\end{aligned}
$$

11. Solve for x and graph the solution.
$3-2 x<7$
$-2 x<4$
$x>-2$
12. Solve for x and graph the solution.
$3-5 x \geq 2 x+7$
$3-7 x \geq 7$
$-7 x \geq 4$
$x \leq \frac{-4}{7}$
13. Solve for x and graph the solution.
$4+6 x<3 x+2$
$2<-3 x$
$-3 x>2$
$x<\frac{-2}{3}$
14. Solve for x and graph the solution.
$3 x+9 \leq 6 x+17$
$-3 x \leq 8$
$x \geq \frac{-8}{3}$
15. Solve the following inequality. Write the answer in bracket interval notation.
$22 \leq \frac{2}{9}(x-32) \leq 42$
$99 \leq x-32 \leq 189$
$131 \leq x \leq 221$
[131,221]
16. Solve the following inequality. Write the answer in bracket interval notation.
$-6 x-2 \leq-2(-4 x-2)+6$
$-6 x-2 \leq 8 x+4+6$
$-6 x-2 \leq 8 x+10$
$-14 x \leq+12$
$x \geq \frac{-6}{7}$
$\left[-\frac{6}{7}, \infty\right]$
III. Absolute Value Equations \& Inequalities
17. Solve the following equation for x.
$|x-19|=20$
$x-19=20$ and $\quad-(x-19)=20$
$x=39 \quad$ and $\quad(x-19)=-20$
$x=39 \quad$ and $\quad x=-1$
18. Solve the following equation for x.
$|3 x+2|=2$
$3 x+2=2 \quad$ and $\quad-(3 x+2)=2$
$3 x+2=2 \quad$ and $\quad 3 x+2=-2$
$3 x=0 \quad$ and $\quad 3 x=-4$
$x=0$ and $\quad x=-4 / 3$

The modulus or absolute value of a function is the distance of a value from zero.

For example:

$$
|-9|=9 \quad|3|=3 \quad|-156|=156
$$

Consider the equation:
$|x|=54$, the possible values of x would be _--54 \qquad and \qquad _.
19. Solve the following equation for x.
$|-7 x+10|+9=10$
$-7 x+10+9=10$ and $-(-7 x+10)+9=10$
$-7 x+10=1 \quad$ and $\quad-(-7 x+10)=1$
$-7 x+10=1 \quad$ and $\quad-7 x+10=-1$
$-7 x=-9 \quad$ and $\quad-7 x=-11$
$x=9 / 7 \quad$ and $\quad x=11 / 7$
20. Solve the following equation.
$|x+8|=|9 x-9|$
$x+8=9 x-9 \quad$ and $\quad-(x+8)=9 x-9$
$x+8=9 x-9 \quad$ and $\quad-x-8=9 x-9$
$-8 x=-17$ and $-10 x=-1$
$x=\frac{17}{8} \quad$ and $\quad x=-\frac{1}{10}$
21. Solve the following equation.
$|2 x+4|=5$
$2 x+4=5 \quad$ and $\quad-(2 x+4)=5$
$2 x+4=5 \quad$ and $\quad 2 x+4=-5$
$2 x=1 \quad$ and $\quad 2 x=-9$
$x=\frac{1}{2}$ and $x=-\frac{9}{2}$
22. Solve the following equation.
$|40-x|=12$
$40-x=12$ and $\quad-(40-x)=12$
$40-x=12$ and $40-x=-12$
$-x=-28 \quad$ and $\quad-x=-52$
$x=28 \quad$ and $\quad x=52$
23. Solve the following inequality.
$|x+2| \geq 8$
$x+2 \geq 8 \quad$ and $\quad-(x+2) \geq 8$
$x \geq 6$ and $x+2 \leq-8$
$x \geq 6$ and $x \leq-10$
24. Solve the following inequality.
$|x+5|>4$
$x+5>4 \quad$ and $\quad-(x+5)>4$
$x+5>4 \quad$ and $\quad x+5<-4$
$x>-1 \quad$ and $\quad x<-9$
25. Solve the following inequality.
$4|x+4|-14<2$
$|x+4|-14<\frac{1}{2}$
$|x+4|<14+\frac{1}{2}$
$|x+4|<\frac{29}{2}$
$x+4<\frac{29}{2} \quad$ and $\quad-(x+4)<\frac{29}{2}$

$$
\begin{array}{rll}
x<\frac{29}{2}-4 & \text { and } & (x+4)>\frac{-29}{2} \\
x<\frac{29}{2}-4 & \text { and } & x>\frac{-29}{2}-4 \\
x<\frac{29}{2}-\frac{8}{2} \quad \text { and } & x>\frac{-29}{2}-\frac{8}{2} \\
x<\frac{21}{2} \text { and } & x>\frac{-37}{2}
\end{array}
$$

26. Solve the following inequality.
$|x+4|>-8$
$x+4>-8 \quad$ and $\quad-(x+4)>-8$
$x+4>-8$ and $x+4>8$
$x>-12 \quad$ and $\quad x>4$
27. Solve the following inequality.
$|x-1|<2$
$x-1<2 \quad$ and $\quad-(x-1)<2$
$x<3$ and $x-1>-2$
$x<3$ and $x>-1$
28. Solve the following inequality.
$|3 x-1|<-9$
$3 x-1<-9$ and $\quad-(3 x-1)<-9$
$3 x-1<-9$ and $\quad(3 x-1)>9$
$3 x<-8 \quad$ and $\quad(3 x)>10$
$x<-\frac{8}{3} \quad$ and $\quad x>\frac{10}{3}$
29. Solve the following inequality.
$|x-1|+7>10$
$x-1<2 \quad$ and $\quad-(x-1)<2$
$x<3$ and $x-1>-2$
$x<3$ and $x>-1$
30. Solve the following inequality.
$\left|\frac{3 x+9}{3}\right| \leq 3$
$x+3 \leq 3 \quad$ and $\quad-(x+3) \leq 3$
$x+3 \leq 3 \quad$ and $\quad x+3 \leq-3$
$x \leq 0$ and $\quad x \leq-6$
