Name: <u>Kevin Braza - KEY</u> Date: <u>Math 9/10 Honors</u>

Lesson 1.7 – Radical Equations & Linear Inequalities (Pages 432-455 in Math 9/10 Textbook)

I.	Solve Radical Equations		How to Solve Radical Equations
1.	Solve for the only possible solution. solution is valid or extraneous.	Check if your	
	$\sqrt{3x+9} = 6$		
		Test: $x = 9$	
	3x + 9 = 36	$\sqrt{3(9)+9} = 6$	
	3x = 27	$\sqrt{36} = 6$	
	x = 9		
2.	Solve for the only possible solution. solution is valid or extraneous. $\sqrt{-5x-1} = \sqrt{8x+5}$	Check if your	
	-5x - 1 = 8x + 5	Test: $x = -6/$	13
	-13x = 6	$\sqrt{-5(-\frac{6}{13})-5}$	$1 = \sqrt{8(-\frac{6}{13}) + 5}$
	x = -6/13	$\sqrt{(\frac{30}{13}) - \frac{13}{13}} = \sqrt{(\frac{30}{13})^2 - \frac{13}{13}}$	$\sqrt{\left(-\frac{48}{13}\right) + \frac{65}{13}} = \frac{17}{13}$

- 3. Solve for the only possible solution. Check if your solution is valid or extraneous. $\sqrt{10-x} + x = -2$
- $10 x = (-x 2)^2$ Test x = -6 $\sqrt{10+6} - 6 = -2$ $10 - x = x^2 + 4x + 4$ $x^2 + 5x - 6 = 0$ Test x = 1 $\sqrt{10-1}+1=-2$ (x+6)(x-1) = 0

x = -6, x = 1

4. Solve the following equation: Check if your solution is valid or extraneous.

 $x + \sqrt{2x + 1} = 7$ $\sqrt{2x+1} = 7 - x$ Test: x = 12 $2x + 1 = (7 - x)^2$ $\sqrt{2(12) + 1} = 7 - (12)$ $2x + 1 = 49 - 14x + x^2$ $0 = 48 - 16x + x^2$ Test: x = 4 $\sqrt{2(4)+1} = 7 - (4)$ 0 = (x - 12)(x - 4)x = 12, x = 4

5. Solve the following equation. Check if your solution is valid or extraneous. $x - 3\sqrt{x} - 10 = 0$

 $(\sqrt{x}-5)(\sqrt{x}+2)=0$ $\sqrt{x} = 5$, x = 25 $\sqrt{x} = -2$

6. Solve the following equation. Check if your solution is valid or extraneous.

$$\sqrt{11 - x^{2}} - \frac{2}{\sqrt{11 - x^{2}}} = 1$$

$$u - \frac{2}{u} = 1$$

$$u^{2} - 2 = u$$

$$u^{2} - u - 2 = 0$$

$$(u - 2)(u + 1) = 0$$

$$u = 2, \ u = -1$$

$$\sqrt{11 - x^{2}} = 2, \ \sqrt{11 - x^{2}} = -1$$

$$11 - x^{2} = 4$$

$$x^{2} = 7$$

$$x = \pm \sqrt{7}$$

7. Solve the following equation. Check if your solution is valid or extraneous.

$$(x-1)^{-\frac{1}{2}}(x-8) + (x-1)^{\frac{1}{2}} = 0$$

$$\frac{(x-8)}{(x-1)^{\frac{1}{2}}} + (x-1)^{\frac{1}{2}} = 0$$

$$(x-8) + (x-1)^{1} = 0$$

$$2x - 9 = 0$$

$$x = 9/2$$

II. Linear Inequalities

8. Solve the following inequality. $3x + 10 \le 6x + 12$

 $-3x \leq 2$

$$x \ge -\frac{2}{3}$$

9. Solve the following inequality. -2(n-7) > 17

$$n - 7 < \frac{-17}{2}$$
$$n < \frac{14}{2} + \frac{17}{2}$$
$$n < \frac{33}{2}$$

Rules for Solving Linear Inequalities

Linear inequalities work just like linear equations but with < or > instead of an =.

If we **add or subtract** the same number to both sides, the inequality is *maintained*. If 5 > 3, then 5 + 2 > 3 + 2

If we **multiply or divide** by a **positive** number to both sides, the inequality is *maintained*. If 5 > 3, then $5 \times 2 > 3 \times 2$

If we **multiply or divide** by a **positive** number to both sides, the inequality is *maintained*. If 5 > 3, then $5 \times -2 < 3 \times -2$

10. Solve for *x* and graph the solution. $3x - 4 \leq 2$ $3x \leq 6$ $x \leq 2$ 11. Solve for x and graph the solution. 3 - 2x < 7-2x < 4x > -212. Solve for x and graph the solution. $3 - 5x \ge 2x + 7$ $3 - 7x \ge 7$ $-7x \ge 4$ $x \leq \frac{-4}{7}$ 13. Solve for x and graph the solution. 4 + 6x < 3x + 22 < -3x-3x > 2 $x < \frac{-2}{2}$ 14. Solve for x and graph the solution. $3x + 9 \le 6x + 17$ $-3x \leq 8$ $x \ge \frac{-8}{3}$

15. Solve the following inequality. Write the answer in bracket interval notation.

 $22 \le \frac{2}{9}(x - 32) \le 42$ $99 \le x - 32 \le 189$ $131 \le x \le 221$ [131,221]

Reviewing Interval Notation (Lesson 0.4) Draw a number line graph to display the following domains: (a) $\{x \mid -2 \le x < 3\}$ (b) $\{x | x < 2 \text{ or } x \ge 7\}$ (c) $\{x | x < 0 \text{ or } 1 \le x < 4\}$ Introducing new notation: Let [*a*, *b*] denote an **open interval** between *a* and *b*: $\{x | a \le x \le b\}$ Let (*a*, *b*) denote a **closed interval** between ${x | a < x < b}$ a and b: Let (a, b] or [a, b) denote a **clopen interval** $\{x | a \le x < b\}$ or between *a* and *b*: $\{x | a < x \le b\}.$

16. Solve the following inequality. Write the answer in bracket interval notation.

 $-6x - 2 \le -2(-4x - 2) + 6$ $-6x - 2 \le 8x + 4 + 6$ $-6x - 2 \le 8x + 10$ $-14x \le +12$ $x \ge \frac{-6}{7}$ $[-\frac{6}{7}, \infty]$

III. Absolute Value Equations & Inequalities

17. Solve the following equation for x.

|x - 19| = 20 x - 19 = 20 and -(x - 19) = 20 x = 39 and (x - 19) = -20x = 39 and x = -1

18. Solve the following equation for x.

|3x + 2| = 2 3x + 2 = 2 and -(3x + 2) = 2 3x + 2 = 2 and 3x + 2 = -2 3x = 0 and 3x = -4x = 0 and x = -4/3

19. Solve the following equation for x.

|-7x + 10| + 9 = 10 -7x + 10 + 9 = 10 and -(-7x + 10) + 9 = 10 -7x + 10 = 1 and -(-7x + 10) = 1 -7x + 10 = 1 and -7x + 10 = -1 -7x = -9 and -7x = -11x = 9/7 and x = 11/7

20. Solve the following equation.

|x + 8| = |9x - 9| x + 8 = 9x - 9 and -(x + 8) = 9x - 9 x + 8 = 9x - 9 and -x - 8 = 9x - 9 -8x = -17 and -10x = -1 $x = \frac{17}{8}$ and $x = -\frac{1}{10}$

21. Solve the following equation.

|2x + 4| = 5 2x + 4 = 5 and -(2x + 4) = 5 2x + 4 = 5 and 2x + 4 = -5 2x = 1 and 2x = -9 $x = \frac{1}{2} \text{ and } x = -\frac{9}{2}$

22. Solve the following equation.

|40 - x| = 12 40 - x = 12 and -(40 - x) = 12 40 - x = 12 and 40 - x = -12 -x = -28 and -x = -52x = 28 and x = 52

23. Solve the following inequality.

 $|x + 2| \ge 8$ $x + 2 \ge 8 \quad \text{and} \quad -(x + 2) \ge 8$ $x \ge 6 \quad \text{and} \quad x + 2 \le -8$ $x \ge 6 \quad \text{and} \quad x \le -10$ The **modulus** or **absolute value** of a function is the distance of a value from zero.

For example:

|-9| = 9 |3| = 3 |-156| = 156

Consider the equation:

|x| = 54, the possible values of x would be ____54___ and ___54___.

24. Solve the following inequality.

|x + 5| > 4 x + 5 > 4 and -(x + 5) > 4 x + 5 > 4 and x + 5 < -4x > -1 and x < -9

25. Solve the following inequality.

$$4|x + 4| - 14 < 2$$

$$|x + 4| - 14 < \frac{1}{2}$$

$$|x + 4| < 14 + \frac{1}{2}$$

$$|x + 4| < \frac{29}{2}$$

$$x + 4 < \frac{29}{2$$

26. Solve the following inequality.

x+4 > -8				
x + 4 > -8	and	-(x+4) > -8		
x + 4 > -8	and	x + 4 > 8		
x > -12	and	<i>x</i> > 4		

27. Solve the following inequality.

|x-1| < 2 x-1 < 2 and -(x-1) < 2 x < 3 and x-1 > -2x < 3 and x > -1

28. Solve the following inequality.

|3x - 1| < -9 3x - 1 < -9 and -(3x - 1) < -9 3x - 1 < -9 and (3x - 1) > 9 3x < -8 and (3x) > 10 $x < -\frac{8}{3} \text{ and } x > \frac{10}{3}$

29. Solve the following inequality.

|x-1| + 7 > 10 x-1 < 2 and -(x-1) < 2 x < 3 and x-1 > -2x < 3 and x > -1

30. Solve the following inequality.

 $\left|\frac{3x+9}{3}\right| \le 3$ $x+3 \le 3$ and $-(x+3) \le 3$ $x+3 \le 3$ and $x+3 \le -3$ $x \le 0$ and $x \le -6$