Name: \qquad Date: \qquad
Lesson 2.3 - Pythagorean Theorem, Distance \& Midpoint Formulas, Shapes and Polygons

I. The Pythagorean Theorem

In a right triangle (a triangle with a right angle), the square of the length of the hypotenuse is equal to the sum of the squares of the length of the legs. $a^{2}+b^{2}=c^{2}$ where a and b are the legs, and c is the hypotenuse.

1. Find the missing sides in the triangles below. Leave answers in simplest radical form.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

II. The Coordinate Plane, Distance and Midpoint Formulas

2. Recall the Segment Addition Postulate: Given that B is between A and C, find each missing measure.
(a) $A B=5.3, B C=$ \qquad , $A C=6.7$
(b) $A B=3 x, B C=5 x, A C=8$

The year is 1619. René Descartes, a private boarding school student grounded in his dorm room because he sucked at his chores, stared up to the base of the top bunk bed and saw a fly. In his sheer boredom, he draws a grid with some tick marks on the bunk frame, and decides to keep track of the fly's position. This was later called the Cartesian (rectangular) plane, and was first published by that name in 1637. It looks like two number lines perpendicular to each other like to the right.

Points on a Cartesian plane are written (x, y) where x represents the value on the horizontal number line, and y represents the vertical.

3. Consider the points $(-3,2)$ and $(1,5)$.
a. Plot the points on the grid to the right.
b. Find the "midpoint" between the points $(-3,2)$ and $(1,5)$.
c. Find the distance between the points $(-3,2)$ and $(1,5)$.
4. Y is the midpoint of XZ . Given $\mathrm{Z}(2,8)$ and $\mathrm{Y}(-2,2)$, find the distance of segment XZ and the coordinates of the midpoint Y .

The Midpoint Formula:

(The midpoint is just average of the x values and the average of the y values.)

The Distance Formula:

(Remember: the distance formula comes from the Pythagorean Theorem, using $\left(x_{2}-x_{1}\right)$ and $\left(y_{2}-y_{1}\right)$.
5. Use the diagram to the right to find the midpoint and distance of the following segments.
(a) CD
(b) FD

(c) HE
(d) AJ

III. Polygons and Shapes

A \qquad is a closed figure in a plane made by joining line segments, where each line segment intersects exactly two others. Each endpoint of a side is called a \qquad of the polygon.

A polygon can be named by all its vertices in consecutive order.

Number of sides	Type of polygon	Number of sides	Type of polygon
3		8	
4		9	
5		10	
6		11	
7		12	

A \qquad polygon has every interior angle less than 180°, while a \qquad polygons has at least one angle greater than 180°.

Convex Polygons

Concave Polygons

The angles of a triangle sum to \qquad . The angles of a quadrilateral sum to \qquad . The angles of any polygon sum to \qquad , where n is the number of sides.
6. Tell whether the figure is a polygon. If it is not, say why. If it is, say whether it is convex or concave.
(a)

(b)

(c)

7. The lengths (in meters) of two sides of a regular heptagon are represented by the expression $11 x-32$ and $6 x-7$. Find the length of a side of the heptagon.
8. The expression $6 x+36.5$ and $13 x-54.5$ represent the lengths (in feet) of two sides of regular pentagon. Find the length of a side of the pentagon.
9. The vertices of a figure are given below. Plot and connect the points so that they form a convex polygon. Classify the figure. Then show that the figure is equilateral using algebra.
$A(-2,-1), \quad B(-1,2), \quad C(2,3), \quad D(5,2), \quad E(4,-1), \quad F(1,-2)$

