Name: \qquad Date: \qquad
Lesson 2.7 - More Geometry Proofs: Segments, Angles \& Lines
In high school geometry in the US, we do something called a two-column proof, where we are given an initial statement and are asked to prove a conjecture. The left column is labelled "Statements" and the right column is labelled
"Reasons", and we proceed to make statements with the reasoning behind those statements until the conjecture is proven.
I. Given $\frac{2 x-9}{5}=\mathbf{1}$, Prove: $\quad x=7$

STATEMENTS

REASONS

1. $\frac{2 x-9}{5}=1$
2.
3.
4. $x=7$
II. Given $\quad \mathrm{AC}=\mathrm{BD}$, Prove: $\quad \mathrm{AB}=\mathrm{CD}$

STATEMENTS

1. $\mathbf{A C}=\mathbf{B D}$
2. $\mathbf{A C}=\mathbf{A B}+\mathbf{B C}$
$B D=B C+C D$
3. $\mathbf{A B}+\mathbf{B C}=\mathbf{B C}+\mathbf{C D}$
4. $\mathbf{A B}=\mathbf{C D}$
III. Given $m \angle 1=m \angle 2 ; m \angle 3=m \angle 4$

Prove: $\quad m \angle A B C=m \angle D E F$

STATEMENTS

1. $m \angle 1=m \angle 2 ; m \angle 3=m \angle 4$
2.
3.
4. $m \angle A B C=m \angle D E F$
5. Given
6.
7.
8.

REASONS

1. Given
2.
3.
4.

1. Given
2.
3.
4.

IV. Given $\angle 2 \cong \angle 3$

Prove: $\quad \angle 1 \cong \angle 4$

STATEMENTS

REASONS

1. $\angle \mathbf{1} \cong \angle 2$
2. $\angle 2 \cong \angle 3$
3. $\angle 3 \cong \angle 4$
4. $\angle 1 \cong \angle 4$
5. Given
6.
7.
8.

1. Given
2.
3.
4.
5.
6.

STATEMENTS

1. $\angle \mathbf{1}$ and $\angle \mathbf{2}$ are supplementary.
2.
3.
4.
5.

VI. Given $\angle 1$ and $\angle 2$ are supplementary

Prove: $\quad \angle 3$ and $\angle 4$ are supplementary

1. Given
2. Def. of supplementary angles
3. Vertical angles are congruent
4. Substitution (Statements 2 \& 3)
5. Def. of \qquad
6.

REASONS

VII. Given $\overline{B D}$ bisects $\angle E B C$

Prove: $\quad \angle 1$ and $\angle 3$ are supplementary

STATEMENTS

1. $\overline{\boldsymbol{B D}}$ bisects $\angle \boldsymbol{E B C}$
2. $m \angle 1=m \angle 2$
3. $\boldsymbol{m} \angle \mathbf{2}+\boldsymbol{m} \angle \mathbf{3}=\mathbf{1 8 0}$
4. $\boldsymbol{m} \angle \mathbf{1}+\boldsymbol{m} \angle \mathbf{3}=\mathbf{1 8 0}$
5. $\angle \mathbf{1}$ and $\angle \mathbf{3}$ are supplementary

REASONS

1. Given
2.
3.
4.
5.

VIII. Given $\angle F E C$ is right angle

Prove: $\quad \angle 1$ and $\angle 4$ are complementary

STATEMENTS

1. $\angle F E C$ is a right angle.
2. $m \angle F E C=90$
3. $m \angle F E C=m \angle 1+m \angle 2$
4. $\boldsymbol{m} \angle \mathbf{1}+\boldsymbol{m} \angle 2=\mathbf{9 0}$
5. $\boldsymbol{m} \angle \mathbf{2}=\boldsymbol{m} \angle 4$
6. $m \angle \mathbf{m}+\boldsymbol{m} \angle 4=\mathbf{9 0}$
7. $\angle \mathbf{1}$ and $\angle 4$ are complementary
IX. Given $\angle 2 \cong \angle 3$

Prove: $\quad \angle 1 \cong \angle 4$

STATEMENTS

REASONS

1. $\angle 2 \cong \angle 3$
2.
3.
4.
5.
6.
7. Given
8.
9.
10.
11.
12.
